精英家教网 > 高中数学 > 题目详情

【题目】2016年1月2日凌晨某公司公布的元旦全天交易数据显示,天猫元旦当天全天的成交金额为315.5亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了1月1日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.

I)先求出的值,再将如图4所示的频率分布直方图绘制完整;

II)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,

购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据

此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?

参考数据:

参考公式:,其中.

【答案】(I;(II列联表见解析,犯错误的概率不超过的前提下认为网购金额超过元与网龄在年以上有关.

【解析】

试题分析:I以下频率为所以网购金额在的频率为,即,且,从而 ,由此可画出频率分布直方图II)根据数据填写好表格,代入公式计算得,能在犯错误的概率不超过的前提下认为网购金额超过元与网龄在年以上有关.

试题解析:

I)因为网购金额在2000元以上(不含2000元)的频率为0.4,

所以网购金额在的频率为

,且

从而 ,相应的频率分布直方图如图3所示:

II)相应的列联表为:

由公式

因为

所以据此列联表判断,在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

时,求函数的单调区间;

若函数的图象在点处的切线的倾斜角为函数当且仅当在处取得极值,其中的导函数,求取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形中,分别在上,且,沿将四边形折成四边形,使点在平面上的射影在直线上,且.

1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的正方形, 平面 平面 .

(1)证明:平面平面

(2)在上是否存在一点,使平面将几何体分成上下两部分的体积比为?若存在,求出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面,四边形是正方形,四边形是菱形,且,点分别为边的中点,点是线段上的动点.

(1)求证:

(2)求三棱锥的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上为增函数,,为常数, .

(1)的值;(2)上为单调函数,的取值范围;

(3),若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1PBC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________写出所有正确命题的编号

时,S为四边形

时,S为等腰梯形

时,S的交点R满足

时,S为六边形

时,S的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.

(1)求证:GH平面CDE;

(2)若CD=2,DB=4,求四棱锥F—ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数自然对数的底数

求曲线的切线方程;

最大值

其中导函数,证明:对任意

查看答案和解析>>

同步练习册答案