在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上,
(1)求椭圆C1的方程.
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
(1) +y2=1 (2) y=x+,y=-x-
【解析】(1)由题意得c=1,b=1,a==,
∴椭圆C1的方程为+y2=1.
(2)由题意得直线的斜率一定存在且不为0,设直线l的方程为y=kx+m.
因为椭圆C1的方程为+y2=1,
∴
消去y得(1+2k2)x2+4kmx+2m2-2=0.
直线l与椭圆C1相切,
∴Δ=16k2m2-4(2k2+1)(2m2-2)=0.
即2k2-m2+1=0. ①
直线l与抛物线C2:y2=4x相切,则
消去y得k2x2+(2km-4)x+m2=0.
∴Δ=(2km-4)2-4k2m2=0,即km=1. ②
由①②解得k=,m=;k=-,m=-.
所以直线l的方程y=x+,y=-x-.
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业六十九第十章第六节练习卷(解析版) 题型:选择题
记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十第八章第一节练习卷(解析版) 题型:选择题
直线xcos140°+ysin140°=0的倾斜角是( )
(A)40° (B)50° (C)130° (D)140°
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十第八章第一节练习卷(解析版) 题型:选择题
已知直线l:ax+y-2-a=0在x轴和y轴上的截距互为相反数,则a的值是( )
(A)1 (B)-1
(C)-2或-1 (D)-2或1
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十四第八章第五节练习卷(解析版) 题型:选择题
如图,已知点B是椭圆+=1(a>b>0)的短轴位于x轴下方的端点,过B作斜率为1的直线交椭圆于点M,点P在y轴上,且PM∥x轴,·=9,若点P的坐标为(0,t),则t的取值范围是( )
(A)0<t<3 (B)0<t≤3
(C)0<t< (D)0<t≤
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十六第八章第七节练习卷(解析版) 题型:解答题
已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程.
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十八第八章第九节练习卷(解析版) 题型:填空题
已知椭圆+=1(a>b>0)的右顶点为A(1,0),过其焦点且垂直长轴的弦长为1,则椭圆方程为 .
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十九第八章第十节练习卷(解析版) 题型:解答题
如图,已知椭圆C:+y2=1(a>1)的上顶点为A,离心率为,若不过点A的动直线l与椭圆C相交于P,Q两点,且·=0.
(1)求椭圆C的方程.
(2)求证:直线l过定点,并求出该定点N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com