精英家教网 > 高中数学 > 题目详情
18.函数f(x)是定义在R上的偶函数,且F(x)=f(x)+x,若F(2)=3,则F(-2)=1.

分析 由题意,f(-2)=f(2),再代入计算,即可得出结论.

解答 解:由题意,f(-2)=f(2),
∵F(x)=f(x)+x,F(2)=3,
∴F(-2)=f(-2)-2=3-2=1,
故答案为:1.

点评 本题综合考查了函数的奇偶性,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,已知正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上
的点,且AM=AN=1.
(Ⅰ)证明:M,N,C,D1四点共面;
(Ⅱ)求几何体AMN-DD1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$f(x)=\left\{\begin{array}{l}{|lg|x||\\;x≠0}\\{0\\;x=0}\end{array}\right.$,关于x的方程f2(x)+bf(x)+c=0有7个不同的解,则满足b,c的条件是(  )
A.b<0,c<0B.b<0,c=0C.b>0,c=0D.b>0,c<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.高为1的四棱锥S-ABCD的底面是边长为2的正方形,点S、A、B、C、D均在半径为$\frac{\sqrt{17}}{2}$的同一球面上,在底面ABCD的中心与顶点S之间的距离为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α,β所成的角分别为$\frac{π}{4}$和$\frac{π}{6}$,线段AB在α∩β=l上的射影为 A′B′,若AB=12,则A′B′=(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}满足a1=2,a2=2,an+2=2an+1-an+2.
①设bn=an+1-an,证明{bn}是等差数列;
②求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α∩β=l,a?α,b?β,且a,b是异面直线,那么直线l(  )
A.至多与a,b中的一条相交B.至少与a,b中的一条平行
C.与a,b都相交D.至少与a,b中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\vec a=(1,-1)$,$\vec b=(-1,2)$,则$|{2\vec a-\vec b}$|=(  )
A.5B.0C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$α∈({0,\frac{π}{2}})∪({\frac{π}{2},π})$,且sinα,sin2α,sin4α成等比数列,则α的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

同步练习册答案