【题目】平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深(米)是随着一天的时间呈周期性变化,某天各时刻的水深数据的近似值如下表:
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.5 | 2.4 | 1.5 | 0.6 | 1.4 | 2.4 | 1.6 | 0.6 | 1.5 |
(Ⅰ)根据表中近似数据画出散点图(坐标系在答题卷中).观察散点图,从
①, ②,③
中选择一个合适的函数模型,并求出该拟合模型的函数解析式;(Ⅱ)为保证队员安全,规定在一天中的5~18时且水深不低于1.05米的时候进行训练,根据(Ⅰ) 中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全。
科目:高中数学 来源: 题型:
【题目】如图,我海监船在岛海域例行维权巡航,某时刻航行至处,此时测得其东北方向与它相距海里的处有一外国船只,且岛位于海监船正东海里处。
(Ⅰ)求此时该外国船只与岛的距离;
(Ⅱ)观测中发现,此外国船只正以每小时海里的速度沿正南方向航行。为了将该船拦截在离岛海里处,不让其进入岛海里内的海域,试确定海监船的航向,并求其速度的最小值.
(参考数据: , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,上顶点为,短轴长为2,为原点,直线与椭圆的另一个交点为,且的面积是的面积的3倍.
(1)求椭圆的方程;
(2)直线与椭圆相交于两点,若在椭圆上存在点,使为平行四边形,求取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直角梯形ABCD中,AD∥BC,∠ADC=90°,A(-3,-10),
B (-2,-1),C(3,4),
(1)求边AD和CD所在的直线方程;
(2)数列的前项和为,点在直线CD上,求证为等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知曲线(为参数),在以为极点, 轴正半轴为极轴的极坐标系中,曲线,曲线.
(1)求曲线与的交点的直角坐标;
(2)设点, 分别为曲线上的动点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 的离心率为,过左焦点作x轴的垂线交椭圆于A、B两点,且|AB|=1.
(1)求椭圆E的方程;
(2)设P、Q是椭圆E上两点,P在第一象限,Q在第二象限,且OP⊥OQ,其中O是坐标原点.
当P、Q运动时,是否存在定圆O,使得直线PQ都与定圆O相切?若存在,请求出圆O的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).
(1)求的解析式及单调递减区间;
(2)是否存在常数,使得对于定义域内的任意, 恒成立,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com