精英家教网 > 高中数学 > 题目详情
13.设两条直线的方程分别为x+y+a=0和 x+y+b=0,已知a、b是关于x的方程x2+x+c=0的两个实根,且0≤c≤$\frac{1}{8}$,则这两条直线间距离的最大值和最小值分别为(  )
A.$\frac{{\sqrt{2}}}{4},\frac{1}{2}$B.$\sqrt{2},\frac{{\sqrt{2}}}{2}$C.$\sqrt{2},\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2},\frac{1}{2}$

分析 利用方程的根,求出a,b,c的关系,求出平行线之间的距离表达式,然后求解距离的最值.

解答 解:因为a,b是方程x2+x+c=0的两个实根,
所以a+b=-1,ab=c,两条直线之间的距离d=$\frac{|a-b|}{\sqrt{2}}$,
所以d2=$\frac{(a+b)^{2}-ab}{2}$=$\frac{1-4c}{2}$,
因为0≤c≤$\frac{1}{8}$,
所以$\frac{1}{2}$≤1-4c≤1,
即d2∈[$\frac{1}{4}$,$\frac{1}{2}$],所以两条直线之间的距离的最大值和最小值分别是$\frac{\sqrt{2}}{2}$,$\frac{1}{2}$.
故选:D.

点评 本题考查平行线之间的距离的求法,函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.袋中有3个红球,4个黄球,2个白球(球除颜色外其余均相同),从中不放回的摸球,用A表示第一次摸到的是白球,用B表示第二次摸到的是黄球,则在事件A发生的前提下事件B发生的概率为(  )
A.$\frac{4}{5}$B.$\frac{4}{9}$C.$\frac{2}{7}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.y=|sinx|的一个单调增区间为(  )
A.(-$\frac{π}{4}$,$\frac{π}{4}$)B.($\frac{π}{4}$,$\frac{3π}{4}$)C.(π,$\frac{5π}{4}$)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设i为虚数单位,则$\frac{(1-i)(1+2i)}{1+i}$=(  )
A.-2-iB.-2+iC.2-iD.2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程(x-y)2+(xy-1)2=0表示的图形是(  )
A.两条直线B.两条双曲线
C.两个点D.一条直线和一条双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求二次函数在给定区间的最值:
(1)y=x2,t≤x≤t+1
(2)y=x2-2mx,-1≤x≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax2+2ax+1在区间[-1,2]上有最大值4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解关于x的不等式$\frac{{x}^{2}-x+3}{{x}^{2}+ax}$>0(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列不等式的解集
(1)|x+1|-|2x-6|>3
(2)x+$\frac{2}{x+1}$>2.

查看答案和解析>>

同步练习册答案