精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=2sin(ωx+φ)(-π<φ<0,ω>0)的图象关于直线$x=\frac{π}{6}$对称,且两相邻对称中心之间的距离为$\frac{π}{2}$.
(1)求函数y=f(x)的单调递增区间;
(2)若关于x的方程f(x)+log2k=0在区间$[0,\frac{π}{2}]$上总有实数解,求实数k的取值范围.

分析 (1)直接求解函数的周期,利用函数的对称性,列出方程求解φ,然后利用正弦函数的单调增区间求解即可.
(2)转化求解函数的值域,利用对数的运算法则,化简求解即可.

解答 解:(1)周期T=π,所以ω=2,当$x=\frac{π}{6}$时,$2•\frac{π}{6}+φ=kπ+\frac{π}{2}$,(2分)
得$φ=kπ+\frac{π}{6},k∈Z$,又-π<φ<0,所以取k=-1,得$φ=-\frac{5π}{6}$(2分)
所以$f(x)=2sin(2x-\frac{5π}{6})$,(1分)
由$2kπ-\frac{π}{2}≤2x-\frac{5π}{6}≤2kπ+\frac{π}{2}$,得$kπ+\frac{π}{6}≤x≤kπ+\frac{2}{3}π$,k∈Z
所以函数y=f(x)的单调递增区间是得$[kπ+\frac{π}{6},kπ+\frac{2}{3}π]$(k∈Z),(2分)
(2)当$x∈[0,\frac{π}{2}]$时,$-\frac{5π}{6}≤2x-\frac{5π}{6}≤\frac{π}{6}$,所以$f(x)=2sin(2x-\frac{5π}{6})∈[-2,1]$,(2分)
所以log2k=-f(x)∈[-1,2],得$k∈[\frac{1}{2},4]$. (3分)

点评 本题考查函数与方程的应用,三角函数的最值,周期意见解析式的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图是函数f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分图象,则f(3x0)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{-x+a,x<1}\\{{x}^{2},x≥1}\end{array}\right.$存在最小值,则当实数a取最小值时,f[f(-2)]=(  )
A.-2B.4C.9D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F,过F的直线交椭圆于A,B两点,点C是点A关于原点O的对称点,若CF⊥AB且CF=AB,则椭圆的离心率为$\sqrt{6}-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinα=$\frac{1}{3}$,α为第二象限角,则cosα的值为(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{2\sqrt{2}}{3}$D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|log2x>m},B={x|-4<x-4<4}.
(1)当m=2时,求A∪B,A∩B;
(2)若A⊆∁RB,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}满足:a1=1,3a2-a1=1,且$\frac{2}{{a}_{n}}$=$\frac{{a}_{n-1}+{a}_{n+1}}{{a}_{n-1}{a}_{n+1}}$(n≥2)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列b1=$\frac{1}{2}$,4bn=an-1an,设{bn}的前n项和Tn.证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A=$(\begin{array}{l}{0}&{1}&{0}\\{0}&{0}&{1}\\{1}&{0}&{0}\end{array})$.
(1)求A2,A3,A2014
(2)若n阶方阵B=$[\begin{array}{l}{0}&{1}&{0}&{0}&{…}&{0}\\{0}&{0}&{1}&{0}&{…}&{0}\\{0}&{0}&{0}&{1}&{…}&{0}\\{…}&{…}&{…}&{…}&{…}&{…}\\{0}&{0}&{0}&{0}&{…}&{1}\\{1}&{0}&{0}&{0}&{…}&{0}\end{array}]$(左下角1的余子式为n-1阶单位矩阵),试求出Bk(k∈N*).
(3)若C=$(\begin{array}{l}{{c}_{0}}&{{c}_{1}}&{{c}_{2}}\\{{c}_{2}}&{{c}_{0}}&{{c}_{1}}\\{{c}_{1}}&{{c}_{2}}&{{c}_{0}}\end{array})$,则称此矩阵为三阶循环矩阵,请你参考(1)的计算过程证明两个三阶循环矩阵的乘积仍为三阶循环矩阵.三阶循环矩阵的乘法是否满足交换律?如果是,请说明理由,如果不是,请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给定函数:①$y=\sqrt{x}$,②$y={log}_{\frac{1}{2}}(x+1)$,③y=|x2-2x|,④y=x+$\frac{1}{x}$,其中在区间(0,1)上单调递减的函数序号是(  )
A.②④B.②③C.①③D.①④

查看答案和解析>>

同步练习册答案