A. | 3 | B. | $\frac{1}{8}$ | C. | -2 | D. | 2 |
分析 由函数f(x+1)是偶函数,可得f(-x+1)=f(x+1变形得到函数的周期,然后利用函数的周期性把f(log28)转化为求给出的函数解析式范围内的值,从而得到答案.
解答 解:由f(x+1)是偶函数,可得f(-x+1)=f(x+1),
则函数f(x)为周期为2的周期函数,
∴f(log28)=f(3log22)=f(3)=f(3-4)=f(-1).
又当x∈[-1,0]时,$f(x)={({\frac{1}{2}})^x}$,
∴f(log28)=f(-1)=2.
故选:D.
点评 本题考查了函数的周期性,考查了函数奇偶性的性质,考查了学生灵活分析问题和解决问题的能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | m?A | B. | m∉A | C. | {m}∈A | D. | {m}⊆A |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1组 | B. | 2组 | C. | 3组 | D. | 4组 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com