【题目】我国古代数学名著《孙子算经》中有如下问题:“今有三女,长女五日一归,中女四日一归,少女三日一归.问:三女何日相会?” 意思是:“一家出嫁的三个女儿中,大女儿每五天回一次娘家,二女儿每四天回一次娘家,小女儿每三天回一次娘家.三个女儿从娘家同一天走后,至少再隔多少天三人再次相会?”假如回娘家当天均回夫家,若当地风俗正月初二都要回娘家,则从正月初三算起的一百天内,有女儿回娘家的天数有
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】下列命题:①在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率, 越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少0.5个单位;④对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度越大.其中正确命题的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=logm(m>0且m≠1),
(I)判断f(x)的奇偶性并证明;
(II)若m=,判断f(x)在(3,+∞)的单调性(不用证明);
(III)若0<m<1,是否存在β>α>0,使f(x)在[α,β]的值域为[logmm(β-1),logm(α-1)]?若存在,求出此时m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
(Ⅰ)求证:平面ABC1⊥平面A1C1CA;
(Ⅱ)设D是A1C1的中点,判断并证明在线段BB1上是否存在点E,使DE∥平面ABC1;若存在,求三棱锥E﹣ABC1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:①定义在上的函数满足,则一定不是上的减函数;
②用反证法证明命题“若实数,满足,则都为0”时,“假设命题的结论不成立”的叙述是“假设都不为0”;
③把函数的图象向右平移个单位长度,所得到的图象的函数解析式为;
④“”是“函数为奇函数”的充分不必要条件.
其中所有正确命题的序号为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com