精英家教网 > 高中数学 > 题目详情
12.等差数列{an}中,a3+a4=4,a5+a7=6,求{an}的通项公式.

分析 利用等差数列的通项公式列出方程组,求出首项与公差,由此能求出{an}的通项公式.

解答 (本题满分10分)
解:设数列{an}的公差为d,
由题意有2a1+5d=4,a1+5d=3,…(4分)
解得${a_1}=1,d=\frac{2}{5}$,…(8分)
所以{an}的通项公式为${a_n}=\frac{2n+3}{5}$…(10分)

点评 本题考查等差数列的通项公式的求法,是基础题,解题时要认真审题,注意等差数列性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.(1)求函数$y=\root{3}{x-1}+\frac{1}{x-3}+{log_{(2x-1)}}(-4x+8)$的定义域;
(2)求函数$y={(\frac{1}{2})^{{x^2}+2x-1}}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题$p:?x∈R,{x_0}^2+4{x_0}+6<0$,则¬p为(  )
A.?x∈R,x2+4x+6≥0B.$?x∈R,{x_0}^2+4{x_0}+6>0$
C.?x∈R,x2+4x+6>0D.$?x∈R,{x_0}^2+4{x_0}+6≥0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的表面积为(  )
A.8+4$\sqrt{3}$B.8+4$\sqrt{2}$C.8+16$\sqrt{2}$D.8+8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A(0,1),B(0,-1),点P满足$\frac{\sqrt{{x}^{2}+(y-1)^{2}}}{|y-\frac{1}{4}|}$=2,则|PA|-|PB|等于(  )
A.1B.-1C.±1D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥平面BCE;
(2)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等腰直角三角形ABC中,AC=BC=1,点M,N分别为AB,BC的中点,点P为△ABC内部任一点,则$\overrightarrow{AN}•\overrightarrow{MP}$取值范围为(  )
A.$({-\frac{3}{4},\frac{3}{4}})$B.$({-\frac{4}{3},\frac{4}{3}})$C.$({0,\frac{3}{4}})$D.$({-\frac{3}{4},0})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=60m,则电视塔的高度为(  )
A.60mB.40mC.$30\sqrt{3}m$D.30m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校从参加高二年级期末考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下频率分布表.根据相关信息回答下列问题:
(1)求a,b的值,并画出频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)用分层抽样的方法在分数在[60,80)内学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人的分数在[70,80)内的概率.

查看答案和解析>>

同步练习册答案