精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1=8,a3=4.
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn
(3)设bn=
1n(12-an)
( n∈N*),求Tn=b1+b2+…+bn( n∈N*).
分析:(1)利用等差数列的通项公式即可得出;
(2)解出an≥0,分类讨论去掉绝对值符号,利用等差数列的前n项和公式得出Sn
(3)利用“裂项求和”即可得出.
解答:解:(1)∵{an}成等差数列,a1=8,a3=4.
∴8+2d=4,解得公差d=-2
∴an=8+(n-1)×(-2)=10-2n.
(2)设a1+a2+…+an=S'n
由an=10-2n≥0 得n≤5,
∴当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=
n(8+10-2n)
2
=-n2+9n=S'n
当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-a6-…-an
=2S'5-S'n=n2-9n+40.
故Sn=
-n2+9n
n2-9n+40
1≤n≤5
n>5
(n∈N)
(3)bn=
1
n(12-an)
=
1
n•(2n+2)
=
1
2
1
n
-
1
n+1
) 
∴Tn=b1+b2+…+bn=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=
n
2(n+1)
点评:本题考查了等差数列的通项公式及前n项和公式、分类讨论、含绝对值符号的数列求和、“裂项求和”等基础知识与基本方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案