精英家教网 > 高中数学 > 题目详情
5.已知数列{an}的前n项和Sn=n2+n,则an=2n.

分析 利用公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$求解.

解答 解:∵数列{an}的前n项和${S_n}={n^2}+n$,
∴a1=S1=1+1=2,
n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,
n=1时,上式成立,
∴an=2n.
故答案为:2n.

点评 本题考查数列的通项公式的求法,是基础题,解题时要认真审题,注意公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=ax3-3x2+4,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围为a<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在三棱锥P一ABC中,PA⊥平面ABC,△ABC为边长为2的正三角形,PA=$\sqrt{3}$,则AP与平面PBC所成的角为(  )
A.45°B.60°C.75°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=-x3+bx(b为常数),若方程f(x)=0的根都在区间[-2,2]内,且函数f(x)在区间(0,1)上单调递增,则b的取值范围是(  )
A.[3,+∞)B.(3,4]C.[3,4]D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,其中c=3,$a=3\sqrt{2}$,$cosB=\frac{{\sqrt{2}}}{4}$,则sinA=(  )
A.$\frac{7}{24}$B.$\frac{{3\sqrt{7}}}{8}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{14}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,M是C上的且位于第一象限的点,以F1M为直径的圆:x2+y2-y-2=0经过焦点F2
(1)求椭圆C的方程;
(2)设直线F1M与椭圆C交于另一点N,求向量$\overrightarrow{N{F}_{2}}$在向量$\overrightarrow{NM}$上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知全集U={1,2,3,4,5,6},①A⊆U;②若x∈A,则2x∉A;③若x∈∁UA,则2x∉∁UA,则同时满足条件①②③的集合A的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若抛物线C:y2=2px的焦点在直线x+y-3=0上,则实数p=6;抛物线C的准线方程为x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.$\frac{3×{2}^{n}-4×{2}^{n-2}}{{2}^{n}-{2}^{n-1}}$.

查看答案和解析>>

同步练习册答案