精英家教网 > 高中数学 > 题目详情
5.已知如图,在Rt△ABC中,∠A=60°,AB=6,点D、E是斜边AB上两点.
(1)当点D是线段AB靠近A的一个三等点时,求$\overrightarrow{CD}$•$\overrightarrow{CA}$的值;
(2)当点D、E在线段AB上运动时,且∠DCE=30°,设∠ACD=θ,试用θ表示△DCE的面积S,并求S的最小值.

分析 (1)以C为坐标原点建立平面直角坐标系,求出$\overrightarrow{CD}$,$\overrightarrow{CA}$的坐标带入公式计算;
(2)在△ACD中,由正弦定理得CD的长,在△BCE中,由正弦定理求出CE的长,带入面积公式S=$\frac{1}{2}$CD•CE•sin30°进行三角化简.

解答 解:(1)以CA为x轴,CB为y轴建立平面直角坐标系如图:
∵∠A=60°,AB=6,∠BCA=90°.
∴A(3,0),B(0,3$\sqrt{3}$),C(0,0),
∴$\overrightarrow{AB}$=(-3,3$\sqrt{3}$),$\overrightarrow{AD}$=$\frac{1}{3}\overrightarrow{AB}$=(-1,$\sqrt{3}$),
$\overrightarrow{CA}$=(3,0).
∴$\overrightarrow{CD}$=$\overrightarrow{CA}$+$\overrightarrow{AD}$=(2,$\sqrt{3}$).
∴$\overrightarrow{CD}$•$\overrightarrow{CA}$=3×2+0×$\sqrt{3}$=6.
(2)在△ACD中,∠ADC=180°-60°-θ=120°-θ,AC=3,
由正弦定理得$\frac{CD}{sin60°}$=$\frac{AC}{sin(120°-θ)}$
∴CD=AC•$\frac{sin60°}{sin(120°-θ)}$=$\frac{3\sqrt{3}}{\sqrt{3}cosθ+sinθ}$.
在△BCE中,∠BCE=90°-30°-θ=60°-θ,
∠BEC=180°-30°-(60°-θ)=90°+θ,BC=3$\sqrt{3}$.
由正弦定理得$\frac{BC}{sin∠BEC}$=$\frac{CE}{sin30°}$,
∴CE=BC•$\frac{sin30°}{sin(90°+θ)}$=$\frac{3\sqrt{3}}{2cosθ}$.
∴S=$\frac{1}{2}$CD•CE•sin30°=$\frac{27}{8}$•$\frac{1}{\sqrt{3}co{s}^{2}θ+sinθcosθ}$
=$\frac{27}{8}$•$\frac{1}{\frac{\sqrt{3}}{2}cos2θ+\frac{1}{2}sin2θ+\frac{\sqrt{3}}{2}}$
=$\frac{27}{8}$•$\frac{1}{sin(2θ+60°)+\frac{\sqrt{3}}{2}}$.
∵0°≤θ≤60°,
∴60°≤2θ+60°≤180°,
∴0≤sin(2θ+60°)≤1,
∴当sin(2θ+60°)=1时,S取得最小值,最小值为$\frac{54+27\sqrt{3}}{16}$.

点评 本题考查了向量的运算在几何中的应用,建立坐标系是简化计算的主要方法,本题第二问计算稍复杂,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.抛掷一枚骰子,记事件A为“落地时向上的数是奇数”,事件B为“落地时向上的数是偶数”,事件C为“落地时向上的数是2的倍数”,事件D为“落地时向上的数是4的倍数”,则下列每对事件是互斥事件但不是对立事件的是(  )
A.A与BB.B与CC.A与DD.B与D

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-1,若关于x的方程|f(x)|2+m|f(x)|+2m+3=0在(0,+∞)上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义某种运算?,S=a?b的运算原理如图,则式子6?3+3?4=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定义在(-∞,-1)∪(1,+∞)上的函数f(x)=1n$\frac{x+1}{x-1}$.
(1)试判断f(x)的奇偶性;
(2)若函数在(1,4)上为增函数,解关于t的不等式f(t)+f(t-6)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax2+bx-2是定义在[1+a,2]上的偶函数,则f(x)在区间[-1,2]上的值域是(  )
A.[-10,2]B.[-14,-2]C.(-∞,-2]D.[-14,-5]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.离心率$e=\frac{2}{3}$,焦距2c=4的椭圆的标准方程为$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1或$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,x≤0}\\{\frac{1}{2}x,x>0}\end{array}\right.$
(1)若f(a)=3,求实数a的值;
(2)若f(x)>1,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.①计算:${2^{{{log}_{\frac{1}{2}}}4}}-{(\frac{27}{8})^{\frac{2}{3}}}+{lg^{\frac{1}{100}}}+{(\sqrt{2}-1)^{lg1}}$;
②已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=3$,求$\frac{{{x^2}+{x^{-2}}-2}}{{x+{x^{-1}}-3}}$的值.

查看答案和解析>>

同步练习册答案