精英家教网 > 高中数学 > 题目详情
(2013•未央区三模)(几何证明选讲)以Rt△ABC的直角边AB为直径的圆O交AC边于点E,点D在BC上,且DE与圆O相切.若∠A=56°,则∠BDE=
68°
68°
分析:已知∠A=56°,利用外角定理可得∠BOE=112°,因为∠ABC=90°,DE与圆O相切,可得O、B、C、E四点共圆,利用其性质即可得到∠BDE.
解答:解:连接OE,因为∠A=56°,所以∠BOE=112°,
又因为∠ABC=90°,DE与圆O相切,
所以O、B、C、E四点共圆,
所以∠BDE=180°-∠BOE=68°.
故答案为68°.
点评:熟练掌握三角形的外角定理、圆的切线的性质、O、B、C、E四点共圆的判定与性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•未央区三模)如图,四棱锥P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA∥平面BDE;
(2)证明:平面BDE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)连掷两次骰子得到的点数分别为m和n,若记向量
a
=(m,n)与向量
b
=(1,-2)
的夹角为θ,则θ为锐角的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)某三棱锥的三视图如图所示,该三棱锥的体积是为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)在数列{an}中,a1=
2
3
,且对任意的n∈N+都有an+1=
2an
an+1

(Ⅰ)求证:{
1
an
-1}
是等比数列;
(Ⅱ)若对于任意n∈N+都有an+1<pan,求实数P的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•未央区三模)若复数Z满足Z=(Z-1)-i,则复数Z的模为(  )

查看答案和解析>>

同步练习册答案