精英家教网 > 高中数学 > 题目详情
4.如图所示,Rt△ABC的顶点A坐标(-2,0),直角顶点B(0,-2$\sqrt{2}$),顶点C在x轴上,点P为线段OA的中点.
(1)求BC所在直线的方程.
(2)M为Rt△ABC外接圆的圆心,求圆M的方程.

分析 (1)根据题意,有A、B的坐标可得kAB,又由AB⊥BC可得kBC,由直线的点斜式方程计算可得答案;
(2)由直线BC的方程可得C的坐标,再根据A、C两点的坐标算出AC中点M坐标以及圆的半径,代入圆的标准方程即可得答案.

解答 解:(1)根据题意,A(-2,0),B(0,-2$\sqrt{2}$),
则kAB=$\frac{-2\sqrt{2}-0}{0-(-2)}$=-$\sqrt{2}$,
又由B为直角顶点,即直线AB⊥BC,
则kBC=$\frac{-1}{-\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
则BC所在直线的方程为y-(-2$\sqrt{2}$)=$\frac{\sqrt{2}}{2}$x,
即$x-\sqrt{2}y=4$;
(2)由(1)BC所在直线的方程$x-\sqrt{2}y=4$,
令y=0,可得x=4,即C的坐标为(4,0),
AC的中点为M,故圆心M(1,0),
半径r=$\frac{AC}{2}$=3,
∴圆M的方程是:(x-1)2+y2=9﹒

点评 本题在坐标系中给出Rt△ABC,求直线BC方程,并求△ABC外接圆M方程.着重考查了直线的斜率、直线的方程和圆的标准方程等知识,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知抛物线的顶点在原点,焦点在y轴上,抛物线上的点P(m,-2)到焦点的距离为5,则m的值为(  )
A.±4B.±2$\sqrt{5}$C.±2$\sqrt{6}$D.±5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC中,b=8,$c=8\sqrt{3}$,${S_{△ABC}}=16\sqrt{3}$,则∠A等于$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平行四边形ABCD中,A点的坐标为(1,0),B点的坐标为(3,2),C点的坐标为(4,-1).
(1)求点D的坐标;
(2)求$\overrightarrow{AB}$与$\overrightarrow{BD}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=sin(ωx+ϕ),A>0,ω>0,若f(x)在区间$[\frac{π}{6},\frac{π}{2}]$上单调,且$f({\frac{π}{2}})=f({\frac{2π}{3}})=-f({\frac{π}{6}})$,则f(x)的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.$已知\overrightarrow a=(2,1),\overrightarrow b=(3,-1)$
(1)求|$\overrightarrow{a}$-$\overrightarrow{b}$|;       
(2)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,设点A是单位圆上的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn,满足(3-m)Sn+2man=m+3(n∈N*).其中m为常数,且m≠-3,m≠0.
(1)求证:数列{an}是等比数列.
(2)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=$\frac{3}{2}$f(bn-1)(n∈N*,n≥2),求证:数列{$\frac{1}{{b}_{n}}$}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.表面积为20π的球面上有四点S、A、B、C,且△ABC是边长为2$\sqrt{3}$的等边三角形,若平面SAB⊥平面ABC,则三棱锥S-ABC体积的最大值是(  )
A.2$\sqrt{3}$B.3$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.4$\sqrt{3}$

查看答案和解析>>

同步练习册答案