精英家教网 > 高中数学 > 题目详情
14.(x-$\frac{2}{x}$)4(x-2)的展开式中,x2的系数为16.

分析 (x-$\frac{2}{x}$)4展开式的通项公式:Tr+1=${∁}_{4}^{r}{x}^{4-r}(-\frac{2}{x})^{r}$=$(-2)^{r}{∁}_{4}^{r}$x4-2r,分别令4-2r=2,4-2r=1,解得r,进而得出.

解答 解:(x-$\frac{2}{x}$)4展开式的通项公式:Tr+1=${∁}_{4}^{r}{x}^{4-r}(-\frac{2}{x})^{r}$=$(-2)^{r}{∁}_{4}^{r}$x4-2r
令4-2r=2,解得r=1;令4-2r=1,解得r=$\frac{3}{2}$舍去.
∴(x-$\frac{2}{x}$)4(x-2)的展开式中,x2的系数为$(-2){∁}_{4}^{1}×(-2)$=16.
故答案为:16.

点评 本题考查了二项式定理的通项公式及其性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在等腰直角三角形ABC中,AC=BC=1,点M,N分别为AB,BC的中点,点P为△ABC内部任一点,则$\overrightarrow{AN}•\overrightarrow{MP}$取值范围为(  )
A.$({-\frac{3}{4},\frac{3}{4}})$B.$({-\frac{4}{3},\frac{4}{3}})$C.$({0,\frac{3}{4}})$D.$({-\frac{3}{4},0})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了考查培育的某种植物的生长情况,从试验田中随机抽取100柱该植物进行检测,得到该植物高度的频数分布表如下:
组序高度区间频数频率
 1[230,235)140.14
2[235,240)0.26
3[240,245)0.20
4[245,250)30
5[250,255)10
合计1001.00
(Ⅰ)写出表中①②③④处的数据;
(Ⅱ)用分层抽样法从第3、4、5组中抽取一个容量为6的样本,则各组应分别抽取多少个个体?
(Ⅲ)在(Ⅱ)的前提下,从抽出的容量为6的样本中随机选取两个个体进行进一步分析,求这两个个体中至少有一个来自第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某校从参加高二年级期末考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如下频率分布表.根据相关信息回答下列问题:
(1)求a,b的值,并画出频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)用分层抽样的方法在分数在[60,80)内学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人的分数在[70,80)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.程序框图如图所示,则该程序运行后输出n的值是(  )
A.4B.2C.1D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{a}{x}$+lnx-3有两个零点x1,x2(x1<x2
(Ⅰ)求证:0<a<e2
(Ⅱ)求证:x1+x2>2a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当函数y=sinx-$\sqrt{3}$cosx(0≤x<2π)取得最大值时,x=(  )
A.$\frac{π}{2}$B.$\frac{5π}{6}$C.$\frac{7π}{6}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列2,5,9,14,20,x,35,…中的x等于(  )
A.25B.26C.27D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=\frac{4}{3}{x^3}-\frac{3}{2}{x^2}-x+210$的单调递增区间是(  )
A.$({-∞,-\frac{1}{4}}]$B.$[{-\frac{1}{4},1}]$C.[1,+∞)D.$({-∞,-\frac{1}{4}}]及[{1,+∞})$

查看答案和解析>>

同步练习册答案