精英家教网 > 高中数学 > 题目详情

【题目】已知公差为0的等差数列{an}满足a1=1,且a1 , a3﹣2,a9成等比数列.
(1)求数列{an}的通项公式;
(2)记数列{ }的前n项和为Sn , 并求使得Sn + 成立的最小正整数n.

【答案】
(1)解:设数列{an}的公差为d,

由a1,a3﹣2,a9成等比数列得,(2d﹣1)2=1×(1+8d),

则d2﹣3d=0,解得d=3或d=0(舍去),

所以an=1+(n﹣1)d=3n﹣2;


(2)解:由(1)得, = = ),

则Sn= [(1﹣ )+( )+…+( )]

= )=

所以Sn + + ,化简得,

n2﹣25n﹣8>0,又n是正整数,解得n≥26,

所以Sn= ,使得Sn + 成立的最小正整数n为26


【解析】(1)设数列{an}的公差为d,根据等比中项的性质、等差数列的通项公式列出方程,求出d的值,代入等差数列的通项公式求出an;(2)由(1)化简 ,利用裂项相消法求出Sn , 化简Sn + 求出n的范围,即可求出最小正整数n.
【考点精析】通过灵活运用等差数列的通项公式(及其变式)和数列的前n项和,掌握通项公式:;数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x+2y+m=0与y轴交于A,B两点,且∠ACB=90°(C为圆心),过点P(0,2)且斜率为k的直线与圆C相交于M,N两点.
(1)求实数m的值;
(2)若|MN|≥4,求k的取值范围;
(3)若向量 与向量 共线(O为坐标原点),求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,已知向量 =(﹣1,2),又点A(8,0),B(n,t),C(ksinθ,t).
(1)若 ,且| |= | |,求向量
(2)若向量 与向量 共线,常数k>0,求f(θ)=tsinθ的值域;
(3)当(2)问中f(θ)的最大值4时,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,在以极点为直角坐标原点,极轴为轴的正半轴建立的平面直角坐标系中,直线的参数方程为为参数).

(1)写出直线的普通方程与曲线的直角坐标方程;

(2)在平面直角坐标系中,设曲线经过伸缩变换 得到曲线,若为曲线上任意一点,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,点D是BC的中点.

(1)求证:A1B∥平面ADC1
(2)若AB⊥AC,AB=AC=1,AA1=2,求平面ADC1与ABA1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是常数.

(Ⅰ)若,且曲线的切线经过坐标原点,求该切线的方程

(Ⅱ)讨论的零点的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x﹣a|
(1)当a=2时,解不等式f(x)≥4.
(2)若不等式f(x)≥2a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位举行联欢活动,每名职工均有一次抽奖机会,每次抽奖都是从甲箱和乙箱中各随机摸取1个球,已知甲箱中装有3个红球,5个绿球,乙箱中装有3个红球,3个绿球,2个黄球.在摸出的2个球中,若都是红球,则获得一等奖;若都是绿球,则获得二等奖;若只有1个红球,则获得三等奖;若1个绿球和1个黄球,则不获奖.
(1)求每名职工获奖的概率;
(2)设X为前3名职工抽奖中获得一等奖和二等奖的次数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是公比为正整数的等比数列,{bn}是等差数列,且a1a2a3=64,b1+b2+b3=﹣42,6a1+b1=2a3+b3=0.
(1)求数列{an}和{bn}的通项公式;
(2)设pn= ,数列{pn}的前n项和为Sn
①试求最小的正整数n0 , 使得当n≥n0时,都有S2n>0成立;
②是否存在正整数m,n(m<n),使得Sm=Sn成立?若存在,请求出所有满足条件的m,n;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案