精英家教网 > 高中数学 > 题目详情
10.已知|x-3|+$\sqrt{y-1}$+(z-4)2=0,求x,y,z的值.

分析 由已知条件利用绝对值、二次根式、平方的性质的求解.

解答 解:∵|x-3|+$\sqrt{y-1}$+(z-4)2=0,
∴$\left\{\begin{array}{l}{x-3=0}\\{y-1=0}\\{z-4=0}\end{array}\right.$,
解得x=3,y=1,z=4.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意绝对值、二次根式、平方的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若$\frac{1+2i}{1+i}$=a+bi(a,b∈R),则loga(b+1)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn,数列{bn}是公差为$\frac{1}{2}$的等差数列,且b4是b2与b6+1的等比中项,bn=$\frac{{S}_{n}}{3n-1}$(n∈N*).
(1)求数列{an}的通项公式;
(2)令cn=($\frac{1}{2}$)an,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.全集U=R,已知集合A={x|(x-2)(x-8)≤0},B={x|$\frac{6-x}{x-1}$>0},P={x|x>a}.
(1)求A∪B,(∁UA)∩B;
(2)如果A∩P≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正数a,b满足a+4b=4,求$\frac{1}{a}$+$\frac{1}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(1)函数y=loga(4-x)的定义域为(-∞,4)
(2)函数y=logax2的定义域为{x|x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知log53=a,log54=b,求证:log2512=$\frac{1}{2}$(a+b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)设A={x|-2≤x≤5},B={x|x≤m+1或x>m+3},若A⊆B,求实数m的取值范围.
(2)设A={x|$\frac{7}{x+2}$≥1},B={x|2m<x<m+1},若B⊆A,求实数m的取值范围;
(3)设A={x|-2≤x<m-3},B={x|3n+4≤x<2},若B=A,求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若△ABC的面积为$\sqrt{3}$,且角A,B,C成等差数列,b2+12=4(a+c),则△ABC的周长为6.

查看答案和解析>>

同步练习册答案