精英家教网 > 高中数学 > 题目详情

【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图),

1)由图中数据求a的值;

2)若要从身高在[120130),[130140),[140150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140150]内的学生中选取的人数应为多少?

3)估计这所小学的小学生身高的众数,中位数(保留两位小数)及平均数.

【答案】1a0.030;(23人;(3)众数115cm,中位数123.33cm,平均数124.5cm

【解析】

1)根据频率和为1,求出[120130)频率,再除以10,即为所求的值;

(2)先求出三组的人数,根据分层抽样按比例分配,将18人按比例分配,即可求解;

(3)根据直方图,频率最大组的中间值,为众数;从左到右求出频率和为0.5所在的组,再求出在该组所占的比例,即可求出中位数;根据平均数的公式,即可求解.

1)因为直方图中的各个矩形的面积之和为1

所以有10×0.005+0.035+a+0.020+0.010)=1

解得a0.030

2)由直方图知,三个区域内的学生总数为

100×10×0.030+0.020+0.010)=60人,

其中身高在[140150]内的学生人数为10人,

所以从身高在[140150]范围内抽取的学生人数为

103人;

3)根据频率分布直方图知,身高在[110120)内的小矩形图最高,

所以该组数据的众数为115cm

0.005×10+0.035×100.40.5

0.4+0.030×100.70.5

所以中位数在[120130)内,

则中位数为

根据频率分布直方图,计算平均数为

105×0.05+115×0.35+125×0.3+135×0.2+145×0.1124.5cm.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若方程 所表示的曲线为C,给出下列四个命题:

C为椭圆,则

C为双曲线,则

曲线C不可能是圆;

,曲线C为椭圆,且焦点坐标为

,曲线C为双曲线,且虚半轴长为

其中真命题的序号为____________.(把所有正确命题的序号都填在横线上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若上恒成立,求的取值范围;

(2)设数列为数列的前项和,求证:

(3)当时,设函数的图象与函数的图象交于点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中).

(1)当时,判断零点的个数k

(2)在(1)的条件下,记这些零点分别为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某部门在上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,单位:分钟)将统计数据按,…,分组,制成频率分布直方图如图所示:

1)求a的值;

2)记A表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”试估计A的概率;

3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为,求的值,并直接写出的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

(1)求未来4年中,至多1年的年入流量超过120的概率;

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:

年入流量

发电量最多可运行台数

1

2

3

若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.某生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据=1,2,…,6),如表所示:

试销单价(元)

4

5

6

7

8

9

产品销量(件)

q

84

83

80

75

68

已知

(Ⅰ)求出的值;

(Ⅱ)已知变量具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程

(参考公式:线性回归方程中的最小二乘估计分别为,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据调查显示,某高校万男生的身高服从正态分布,现从该校男生中随机抽取名进行身高测量,将测量结果分成组: 并绘制成如图所示的频率分布直方图.

(Ⅰ)求这名男生中身高在(含)以上的人数;

(Ⅱ)从这名男生中身高在以上(含)的人中任意抽取人,该人中身高排名(从高到低)在全校前名的人数记为,求的数学期望.

(附:参考数据:若服从正态分布,则 .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(sinx,cosx),=(sin(x﹣),sinx),函数f(x)=2,g(x)=f().

(1)求f(x)在[,π]上的最值,并求出相应的x的值;

(2)计算g(1)+g(2)+g(3)++g(2014)的值;

(3)已知tR,讨论g(x)在[t,t+2]上零点的个数.

查看答案和解析>>

同步练习册答案