精英家教网 > 高中数学 > 题目详情

【题目】某学校在学校内招募了名男志愿者和名女志愿者.将这名志愿者的身高编成如右茎叶图(单位: ),若身高在以上(包括)定义为“高个子”,身高在以下(不包括)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.

(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中抽取人,再从这人中选人,那么至少有一人是“高个子”的概率是多少?

(Ⅱ)若从所有“高个子”中选名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.

【答案】I;(II详见解析.

【解析】试题分析:Ⅰ)根据茎叶图,高个子”12,“非高个子”18利用分层抽样的方法所抽取的高个子的人数为人,进而可求得至少有一人是高个子的概率;

Ⅱ)依题意知,“女高个子的人数为,随机变量的所有可能取值为,计算取每个值的概率,得出分布列,利用公式即可求解数学期望.

试题解析:

(Ⅰ)根据茎叶图,有“高个子”12人,“非高个子”18人,

所以利用分层抽样的方法所抽取的“高个子”的人数为人,

抽取的“非高个子”的人数为人,

设“至少有一人是“高个子””为事件,

,

即至少有一人是“高个子”的概率为.

(Ⅱ)依题意知,“女高个子”的人数为人,随机变量的所有可能取值为.

,

,

.

随机变量的分布列是:

数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别为,且.

(1)求的值;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200.在机器使用期间,如果备件不足再购买,则每个500.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元), 表示购机的同时购买的易损零件数.

=19,yx的函数解析式;

若要求需更换的易损零件数不大于的频率不小于0.5,的最小值;

假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2015年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

组号

分组

频数

频率

第1组

5

第2组

a

第3组

30

b

第4组

20

第5组

10

合计

100

求出频率分布表中ab的值,再在答题纸上完成频率分布直方图;

根据样本频率分布直方图估计样本成绩的中位数;

高校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,再从6名学生中随机抽取2名学生由A考官进行面试,求第4组至少有一名学生被考官A面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为的矩形区域(如图所示),按规划要求:在矩形内的四周安排宽的绿化,绿化造价为200元/,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/.设矩形的长为.

(1)设总造价(元)表示为长度的函数;

(2)当取何值时,总造价最低,并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, ,平面底面, 中点, 是棱上的点, .

(Ⅰ)若点是棱的中点,求证: 平面;

(Ⅱ)求证:平面平面;

(Ⅲ)若二面角,设,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为4,2,则输出v的值为 (  )

A. 9B. 18C. 25D. 50

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在矩形ABCD中, ,点分别在边上,且 于点.现将沿折起,使得平面平面,得到图2.

(Ⅰ)在图2中,求证:

(Ⅱ)若点是线段上的一动点,问点什么位置时,二面角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,且分别为线段的中点,沿折起,使,得到如下的立体图形.

(1)证明:平面平面

(2)若,求点到平面的距离.

查看答案和解析>>

同步练习册答案