精英家教网 > 高中数学 > 题目详情
证明:(
b
a
-p=(
a
b
p(ab≠0)
考点:有理数指数幂的运算性质
专题:推理和证明
分析:利用幂的运算性质即可证得结论成立.
解答: 证明:∵(
b
a
-p=[(
a
b
)-1]-p
=(
a
b
p(ab≠0),
∴原结论得证.
点评:本题考查有理数指数幂的运算性质[(
a
b
)
m
]
n
=(
a
b
)mn
,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若不等式(a2-2a-3)x2-(a+2)x+
1
2
>0对于任何实数x都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(
π
4
π
2
)
,且sinα,cosα为方程25x2-35x+12=0的两根,则tan
α
2
的值为(  )
A、3
B、
1
3
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,一个焦点坐标是F1(0,-1),离心率为
3
3

(1)求椭圆的标准方程;
(2)过点F1作直线交椭圆于A,B两点,F2是椭圆的另一个焦点,若S△ABF2=
8
3
9
时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*
(1)求a2,a3,a4及b2,b3,b4;由此归纳出{an},{bn}的通项公式,并证明你的结论.
(2)若cn=log2
bn
an
),Sn=c1+c2+…+cn,试问是否存在正整数m,使Sm≥5,若存在,求最小的正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足下列条件
①定义域为(-1,1)
②对于任意的x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy

③当x<0时f(x)>0    
已知该函数为奇函数,若f(-
1
3
)=1,写出方程f(x)+
1
2
=0的一个解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-bx2+cx+d,设曲线y=f(x)过点(3,0),且在点(3,0)处的切线的斜率等于4,y=f′(x)为f(x)的导函数,满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
,m>0,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=f′(x)+(2x+1)t,若h(x)<4对t∈[0,1]恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

P是长轴在x轴上的椭圆
x2
a2
+
y2
b2
=1上的点F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|•|PF2|的最大值与最小值之差一定是(  )
A、1
B、a2
C、b2
D、c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=b+2,b=c+2,且最大角是120°,求△ABC的面积.

查看答案和解析>>

同步练习册答案