精英家教网 > 高中数学 > 题目详情

【题目】已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A′B′C′D′(如图所示),其中A′D′=2,B′C′=4,A′B′=1,则直角梯形DC边的长度是(
A.
B.
C.
D.

【答案】B
【解析】解:由已知作出梯形ABCD是直角梯形,如右图: ∵按照斜二测画法画出它的直观图A′B′C′D′,A′D′=2,B′C′=4,A′B′=1,
∴直角梯形ABCD中,AB⊥BC,AD=A′D′=2,BC=B′C′=4,AB=2A′B′=2,
过D作DE⊥BC,交BC于E,则DE=AB=2,EC=BC﹣AD=4﹣2=2,
∴直角梯形DC边的长度为: =2
故选:B.

由已知直角梯形ABCD中,AB⊥BC,AD=A′D′=2,BC=B′C′=4,AB=2A′B′=2,由此能求出直角梯形DC边的长度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某折叠餐桌的使用步骤如图所示,有如图检查项目:

项目①:折叠状态下(如图1),检查四条桌腿长相等;

项目②:打开过程中(如图2),检查

项目③:打开过程中(如图2),检查

项目④:打开后(如图3),检查

项目⑤:打开后(如图3),检查

在检查项目的组合中,可以正确判断“桌子打开之后桌面与地面平行的是”( )

A. ①②③ B. ②③④ C. ②④⑤ D. ③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在一个等比数列{an}同时满足下列三个条件:①a1+a6=11且a3a4= ;②an+1>an(n∈N*);③至少存在一个m(m∈N*且m>4),使得 am1 , am2 , am+1+ 依次构成等差数列?若存在,求出通项公式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 “存在”,命题“曲线表示焦点在轴上的椭圆”,命题 曲线表示双曲线”

1若“”是真命题,求实数的取值范围;

2的必要不充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个四位数的各位数字相加和为,则称该数为“完美四位数”,如数字“”.试问用数字组成的无重复数字且大于的“完美四位数”有( )个

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(a+8)x+a2+a﹣12(a<0),且f(a2﹣4)=f(2a﹣8),则 的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(1)求函数的单调增区间;

(2)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线与圆相交于不同的两点

1求线段的中点的轨迹的方程;

2是否存在实数使得直线与曲线只有一个交点?若存在求出的取值范围;若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

同步练习册答案