精英家教网 > 高中数学 > 题目详情
函数f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f(
xy
)=f(x)-f(y),当x>1时,有f(x)>0.
(1)求f(1)的值;
(2)判断f(x)的单调性并加以证明;
(3)若f(4)=2,求f(x)在[1,16]上的值域.
分析:(1)在恒等式中,令x=y,即可求得f(1)的值;
(2)设x1,x2∈(0,+∞),且x1<x2,利用恒等式得到f(x2)-f(x1),根据题中条件,判断f(x2)-f(x1)的正负,利用函数单调性的定义,即可证明函数的单调性;
(3)根据(2)的结论,将值域问题转化为求最值,根据f(4)=2,结合f(
x
y
)=f(x)-f(y),赋值x=16,y=4,代入即可求得f(16),从而求得f(x)在[1,16]上的值域.
解答:解:(1)∵当x>0,y>0时,f(
x
y
)
=f(x)-f(y),
∴令x=y>0,则f(1)=f(x)-f(x)=0,
∴f(1)=0;
(2)f(x)在(0,+∞)上是递增函数.
证明:设x1,x2∈(0,+∞),且x1<x2
∵f(
x
y
)=f(x)-f(y),
∴f(x2)-f(x1)=f(
x2
x1
)

∵x2>x1>0,
x2
x1 
>1,
∵当x>1时,有f(x)>0,
∴f(
x2
x1
)
>0.
∴f(x2)>f(x1),
∴f(x)在(0,+∞)上是增函数;
(3)由(2)可知,f(x)在[1,16]上是增函数,
∴f (x)min=f(1)=0,f(x)max=f(16),
∵f(4)=2,且f(
x
y
)
=f(x)-f(y),
∴f(
16
4
)
=f(16)-f(4),
∵f(4)=2,
∴f(16)=2f(4)=4,
∴f (x)min=0,f(x)max=4,
∴f(x)在[1,16]上的值域为[0,4].
点评:本题主要考查了利用赋值法求解抽象函数的函数值,同时考查了函数单调性的判断与证明,注意一般单调性的证明选用定义法证明,证明的步骤是:设值,作差,化简,定号,下结论.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的奇偶性并证明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是[0,1),则F(x)=f[log 
12
(3-x)
]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为(-1,1),它在定义域内既是奇函数又是增函数,且f(a-3)+f(4-2a)<0,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[-1,2],则函数
f(x+2)
x
的定义域为(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步练习册答案