精英家教网 > 高中数学 > 题目详情
17.已知f(x)是定义域为(-∞,0)∪(0,+∞)的偶函数,在区间(-∞,0)上单调递减,且f(-$\frac{1}{2}$)=0,若x•[f(x)+f(-x)]<0,则x的取值范围是(-∞,-$\frac{1}{2}$)∪(0,$\frac{1}{2}$).

分析 根据函数奇偶性和单调性之间的关系进行求解即可.

解答 解:∵函数是偶函数函数,
∴不等式x•[f(x)+f(-x)]<0等价为2x•f(x)<0,
∵在区间(-∞,0)上单调递减,且f(-$\frac{1}{2}$)=0,
∴在区间(0,+∞)上单调递增,且f($\frac{1}{2}$)=0,
则对应的图象如图:
当x>0,f(x)<0,由图象知此时0<x<$\frac{1}{2}$,
当x<0,f(x)>0,x<-$\frac{1}{2}$,
综上不等式的解集为(-∞,-$\frac{1}{2}$)∪(0,$\frac{1}{2}$),
故答案为:(-∞,-$\frac{1}{2}$)∪(0,$\frac{1}{2}$)

点评 本题主要考查不等式的求解,根据函数奇偶性和单调性的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设x,y,z均为正实数,且3x=4y=6z
(1)若z=1,求(x-1)(2y-1)的值;
(2)求证:$\frac{1}{z}-\frac{1}{x}=\frac{1}{2y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x2+(2a-1)x+a-2的一个零点比1大,另一个零点比1小,则实数a的取值范围是(-∞,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若存在x∈[2,3],使不等式$\frac{1+ax}{x•{2}^{x}}$≥1成立,则实数a的最小值为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=4mx+2-3m在区间[-2,2]上存在t,使f(t)=0(t≠±2),则m的取值范围是(  )
A.-$\frac{2}{5}$<m<$\frac{2}{11}$B.m<-$\frac{2}{5}$C.m>$\frac{2}{11}$D.m<-$\frac{2}{5}$或m>$\frac{2}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若数列{an}满足:对任意的n∈N*,只有有限个正整数m使得am<n成立,记这样的m的个数为(an*,则得到一个新数列{(an*}.例如,若数列{an}是1,2,3,…n,…,则数列{(an*}是0,1,2,…,n-1,…已知对任意的n∈N*,an=n2,则((a4**=(  )
A.8B.20C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC中,角A,B,C所对的边分别为a,b,c,且cosAcosB=sinAsinB,则△ABC为(  )
A.直角三角形B.锐角三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC,若对任意t∈R,|$\overrightarrow{BA}-t\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|恒成立,则△ABC是(  )
A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a为实常数,函数f(x)=$\frac{lnx+1}{x}-a$
(Ⅰ)求函数f(x)的最值;
(Ⅱ)设g(x)=xf(x)
(i)讨论函数g(x)的单调性;
(ii)若函数g(x)有两个不同的零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案