精英家教网 > 高中数学 > 题目详情
16.直三棱柱ABC-A1B1C1的六个顶点都在直径为$\sqrt{269}$的球面上,且AB=5,AC=12,BC=13,点D是BB1的中点,则AD与平面BCC1B1所成角的正弦值为(  )
A.$\frac{6}{13}$B.$\frac{5}{13}$C.$\frac{6\sqrt{2}}{13}$D.$\frac{5\sqrt{2}}{13}$

分析 由已知AB⊥AC,从而矩形BCC1B1的对角线长即为球直径,进而CC1=6,以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出AD与平面BCC1B1所成的角的正弦值

解答 解:∵直三棱柱ABC-A1B1C1的六个顶点都在直径为$\sqrt{269}$的球面上,
且AB=5,AC=12,BC=13,点D是棱BB1的中点,
∴AB2+AC2=BC2,∴AB⊥AC,
且BC为过底面ABC的截面圆的直径.
取BC中点E,则OE⊥底面ABC,则O在侧面BCC1B1内,
矩形BCC1B1的对角线长即为球直径,
∴$\sqrt{169+C{{C}_{1}}^{2}}$=$\sqrt{269}$,解得CC1=10,
以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,
则A(0,0,0),D(5,0,5),B(5,0,0),B1(5,0,10),C(0,12,0),
$\overrightarrow{AD}$=(5,0,5),$\overrightarrow{BC}$=(-5,12,0),$\overrightarrow{B{B}_{1}}$=(0,0,10),
设平面BCC1B1的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=-5x+12y=0}\\{\overrightarrow{n}•\overrightarrow{B{B}_{1}}=10z=0}\end{array}\right.$,取x=12,得$\overrightarrow{n}$=(12,5,0),
设AD与平面BCC1B1所成的角为θ,
则sinθ=|cos<$\overrightarrow{AD},\overrightarrow{n}$>|=|$\frac{\overrightarrow{AD}•\overrightarrow{n}}{|\overrightarrow{AD}|•|\overrightarrow{n}|}$|=|$\frac{60}{\sqrt{50}•13}$=$\frac{6\sqrt{2}}{13}$.
∴AD与平面BCC1B1所成的角的正弦值为$\frac{6\sqrt{2}}{13}$.
故选:C.

点评 本题考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知ω>0,函数f(x)=sin(ωx+$\frac{π}{4}$)在(0,$\frac{π}{2}$)单调递增,则ω的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{5}{4}$]B.[$\frac{1}{2}$,$\frac{3}{4}$]C.(0,$\frac{1}{2}$]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简下列各式
(1)tanα(cosα-sinα)+$\frac{sinα(sinα+tanα)}{1+cosα}$; 
(2)$\frac{{\sqrt{1-2sin{{130}°}cos{{130}°}}}}{{sin{{130}°}+\sqrt{1-{{sin}^2}{{130}°}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知三棱锥P-ABC,在底面△ABC中,∠A=60°,$BC=\sqrt{3}$,PA⊥面ABC,PA=2,则此三棱锥的外接球的体积为(  )
A.$\frac{{8\sqrt{2}}}{3}π$B.$4\sqrt{3}π$C.$\frac{{4\sqrt{2}π}}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.利用分层抽样的方式在学生总数为1200人的年级中抽出20名同学,其中有女生8人,则该年级男生的人数约为720.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$|{\overrightarrow{\;a\;}}|=3$,$|{\overrightarrow{\;b\;}}|=4$,
(1)若$({\overrightarrow{\;a\;}+2\overrightarrow{\;b\;}})•({2\overrightarrow{\;a\;}-\overrightarrow{\;b\;}})=-20$,求$\overrightarrow{\;a\;}$与$\overrightarrow{\;b\;}$的夹角;
(2)若$\overrightarrow{\;a\;}$与$\overrightarrow{\;b\;}$的夹角为60°,试确定实数k,使$k\overrightarrow{\;a\;}+\overrightarrow{\;b\;}$与$\overrightarrow{\;a\;}-\overrightarrow{\;b\;}$垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=2x-x2的零点的个数为(  )
A.1 个B.2 个C.3 个D.4 个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用数字1、2、3、4、5组成无重复数字的三位数,其中奇数的个数为36.(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是公差不为0的等差数列,a1=$\frac{1}{2}$,数列{bn}是等比数列,且b1=a1,b2=a3,b3=a4,数列{bn}的前n项和为Sn.记点Qn(bn,Sn),n∈Z+
(1)求数列{an},{bn}的通项公式;
(2)证明点Q1,Q2,Q3,…,Qn…在同一条直线l上,并求出直线l的方程;
(3)若△OQnQn+1,(n∈Z+)的面积为An,Tn为数列{An}的前n项和之和,求:$\underset{lim}{n→∞}$An及$\underset{lim}{n→∞}$Tn

查看答案和解析>>

同步练习册答案