精英家教网 > 高中数学 > 题目详情
6.已知一个几何体的三视图如图所示,正视图、俯视图为直角三角形,侧视图是直角梯形,则它的体积等于(  )
A.$\frac{10}{3}$B.$\frac{20}{3}$C.$\frac{40}{3}$D..20

分析 根据几何体的三视图,得出该几何体是底面为直角梯形的四棱锥,把该四棱锥放入棱长为4的正方体中,容易计算出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是如图所示的四棱锥D-CBEC1

把该四棱锥放入棱长为4的正方体中,如图所示;
则该四棱锥的体积为
V=$\frac{1}{3}$S四边形CBEC1•CD=$\frac{1}{3}$×$\frac{1+4}{2}$×4×4=$\frac{40}{3}$.
故选:C.

点评 本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图还原出原几何图形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.若直线y=kx+1(k∈R)与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等比数列{an}的公比q>0,前n项和为Sn.若2a3,a5,3a4成等差数列,a2a4a6=64,则q=2,Sn=$\frac{1}{2}$(2n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量且互相垂直,则($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)等于(  )
A.2B.0C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.给定函数f(x),若对于定义域中的任意x,都有f(x)≥x恒成立,则称函数f(x)为“爬坡函数”.
(1)证明:函数f(x)=x2+1是爬坡函数;
(2)若函数f(x)=4x+m•2x+1+x+2m2-4是爬坡函数,求实数m的取值范围;
(3)若对任意的实数b,函数$f(x)={x^2}+bx+c-\frac{b}{4}$都不是爬坡函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知平面向量$\overrightarrow a=(1,-\sqrt{3}),\overrightarrow b=(3,\sqrt{3})$,则向量$\overrightarrow a$与向量$\overrightarrow{a}$$+\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在正方形ABCD的边长为2,$\overrightarrow{DE}=2\overrightarrow{EC}$,$\overrightarrow{DF}=\frac{1}{2}(\overrightarrow{DC}+\overrightarrow{DB})$,则$\overrightarrow{BE}•\overrightarrow{DF}$的值为(  )
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{10}{3}$D.$-\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f:N→N,并且对所有正整数n,有f(n+1)>f(n),f(f(n))=3n,则f(2015)=(  )
A.2016B.3858C.4030D.6045

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1的左顶点为A、上顶点为B,光线通过点C(-1,0)射到线段AB(端点除外)上的点T,经线段AB反射,其反射光线与椭圆交于点M.若∠CTM为钝角,则T点的横坐标m的范围为(-3,$\frac{-3-\sqrt{3}}{2}$)∪($\frac{\sqrt{3}-3}{2}$,0).

查看答案和解析>>

同步练习册答案