精英家教网 > 高中数学 > 题目详情

(本小题满分12分)一个口袋内装有大小相同的5 个球,其中3个白球分别记为A1、A2、A3;2个黑球分别记为B1、B2,从中一次摸出2个球.

(Ⅰ)写出所有的基本事件;

(Ⅱ)求摸出2球均为白球的概率

 

【答案】

(Ⅰ)从中一次摸出2个球,有如下基本事件:

(A1,A2),(A1,A3), (A1,B1),(A1,B2),(A2,A3), (A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),

共有10个基本事件.

(Ⅱ)P =

【解析】

试题分析:(Ⅰ)用列举法根据题意用分类列举的方法,列举出所有可能的情况;

(Ⅱ)由(I),找出符合事件“摸出的两个球为白球”的所有基本事件,查出其个数,再由公式求出“摸出的两个球为白球”这个事件的概率

(Ⅰ)从中一次摸出2个球,有如下基本事件:

(A1,A2),(A1,A3), (A1,B1),(A1,B2),(A2,A3), (A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),

共有10个基本事件.  -----------------------------------------------------------------6分

(Ⅱ)从袋中的5个球中任取2个,所取的2球均为白球的方法有:      

 (A1,A2),(A1,A3), (A2,A3),共3种, 故所求事件的概率P =.----------------12分

考点:本题主要考查了列举法计算基本事件数及事件发生的概率。

点评:解题的关键是熟练运用分类列举的方法及事件事件的性质将所有的基本事件一一列举出来,运用公式求出概率,列举法求概率适合基本事件数不太多的概率求解问题,本题考查了分类的思想.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案