精英家教网 > 高中数学 > 题目详情
函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.
(1)求证:f(x)是R上的增函数;
(2)若f(4)=5,解不等式f(3m2-m-2)<3.
分析:(1)先任取x1<x2,x2-x1>0.由当x>0时,f(x)>1.得到f(x2-x1)>1,再对f(x2)按照f(a+b)=f(a)+f(b)-1变形得到结论.
(2)由f(4)=f(2)+f(2)-1求得f(2)=3,再将f(3m2-m-2)<3转化为f(3m2-m-2)<f(2),由(1)中的结论,利用单调性求解.
解答:解:(1)证明:任取x1<x2
∴x2-x1>0.
∴f(x2-x1)>1.
∴f(x2)=f[x1+(x2-x1)]
=f(x1)+f(x2-x1)-1>f(x1),
∴f(x)是R上的增函数.
(2)∵f(4)=f(2)+f(2)-1=5,
∴f(2)=3.
∴f(3m2-m-2)<3=f(2).
又由(1)的结论知,f(x)是R上的增函数,
∴3m2-m-2<2,
3m2-m-4<0,
∴-1<m<
4
3
点评:本题主要考查抽象函数的单调性证明和利用单调性定义解抽象不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)对任意的实数x,y都有f(x+y)=f(x)+f(y)+2y(x+y)+1且f(1)=1.
(1)若x∈N*,试求f(x)的解析式;
(2)若x∈N*,且x≥2时,不等式f(x)≥(a+7)x-(a+10)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函,下面四个函数:
①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
xx2+x+1

其中属于有界泛函的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)对任意的实数x,存在常数M,使得不等式|f(x)|≤M|x|恒成立,那么就称函数f(x)为有界泛函数,下面四个函数:①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④f(x)=
x
x2+x+1

其中属于有界泛函数的是(  )
A、①②B、①③C、③④D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)对任意的正实数x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,则一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对任意的实数x1,x2∈D,均有|f(x2)-f(x1)|≤|x2-x1|,则称函数f(x)是区间D上的“平缓函数”,
(1)判断g(x)=sinx和h(x)=x2-x是不是实数集R上的“平缓函数”,并说明理由;
(2)若数列{xn}对所有的正整数n都有 |xn+1-xn|≤
1
(2n+1)2
,设yn=sinxn,求证:|yn+1-y1|<
1
4

查看答案和解析>>

同步练习册答案