【题目】在下列命题中
①函数f(x)=在定义域内为单调递减函数;
②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;
③若f(x)为奇函数,则f(x)dx=2f(x)dx(a>0);
④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;
⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.
其中正确命题的序号为________(写出所有正确命题的序号).
【答案】②④⑤
【解析】对于①,函数f(x)= 在定义域内的区间(﹣∞,0)和(0,+∞)上是减函数, ∴①错误. 对于②,由题意得f(2﹣(x+2))=f(2+(x+2)),即f(﹣x)=f(4+x)=f(x), ∴f(x)是偶函数;∴②正确. 对于③,根据定积分的几何意义是函数图象与x轴所围成的封闭图形的面积的代数和,且被积函数f(x)是奇函数, 得f(x)dx=0,∴③错误. 对于④,∵f(x)=ax3+bx2+cx+d(a≠0),∴f′(x)=3ax2+2bx+c;
当a+b+c=0时,(2b)2﹣4×3a×(﹣a﹣b)=4b2+12a2+12ab=4 +3a2>0,∴f′(x)有二不等零点,f(x)有极值; 当f(x)有极值时,f′(x)=3ax2+2bx+c有二不等零点,即4b2﹣12ac>0,不能得出a+b+c=0; ∴是充分不必要条件,④正确.
对于⑤,∵f(x)=x﹣sinx,∴f′(x)=1﹣cosx≥0,∴f(x)是增函数,∴当a+b>0时,a>﹣b,∴f(a)>f(﹣b); 又∵f(﹣x)=﹣x﹣sin(﹣x)=﹣(x﹣sinx)=﹣f(x),∴f(x)是奇函数,∴f(﹣b)=﹣f(b); ∴f(a)>﹣f(b),即f(a)+f(b)>0;∴⑤正确. 综上,正确的命题是②④⑤;
故答案为:②④⑤.
科目:高中数学 来源: 题型:
【题目】已知复数z=(2m2+3m﹣2)+(m2+m﹣2)i,(m∈R)根据下列条件,求m值.
(1)z是实数;
(2)z是虚数;
(3)z是纯虚数;
(4)z=0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x)定义域中任意的x1 , x2(x1≠x2)有如下结论
1)f(x1+x2)=f(x1)f(x2)
2)f(x1x2)=f(x1)+f(x2)
3) >0
4)f( )<
5)f( )>
6)f(﹣x)=f(x).
当f(x)=lgx时,上述结论正确的序号为 . (注:把你认为正确的命题的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义R上的偶函数,且当x∈[0,+∞)时,函数f(x)是单调递减函数,则f(log25),f(log3 ),f(log53)大小关系是( )
A.f(log3 )<f(log53)<f(log25)
B.f(log3 )<f(log25)<f(log53)
C.f(log53)<f(log3 )<f(log25)
D.f(log25)<f(log3 )<f(log53)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).
(Ⅰ)解该不等式;
(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),设h(x)=f(x)﹣g(x).
(1)求h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为( )(结果保留一位小数.参考数据:,)( )
A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为( )(结果保留一位小数.参考数据:,)( )
A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在圆上, 的坐标分别为, ,线段的垂直平分线交线段于点
(1)求点的轨迹的方程;
(2)设圆与点的轨迹交于不同的四个点,求四边形的面积的最大值及相应的四个点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com