精英家教网 > 高中数学 > 题目详情

如图,三棱锥中,底面的中点,点上,且.

(Ⅰ)求证:平面平面
(Ⅱ)求平面与平面所成的二面角的平面角(锐角)的余弦值.

(Ⅰ)详见解析;(Ⅱ)

解析试题分析:(Ⅰ)主要利用线线垂直、线面垂直可证面面垂直;(Ⅱ)通过作平行线转化到三角形内解角;当然也可建系利用空间向量来解.
试题解析:(Ⅰ)∵底面,且底面, ∴        1分
,可得                                       2分
又∵ ,∴平面                             
注意到平面, ∴                                 3分
,中点,∴                                4分
平面                                  5分
平面,∴                        6分
(Ⅱ)如图,以为原点、所在直线为轴、轴建立空间直角坐标系.
 8分


    10分
设平面的法向量.
 
解得        12分
取平面的法向量为 则
故平面与平面所成的二面角的平面角(锐角)的余弦值为.    14分
考点:立体几何面面垂直的证明;二面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,AC是圆O的直径,点B在圆O上,交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1,

(1)证明
(2)(文科)求三棱锥的体积
(理科)求平面和平面所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱的底面是平行四边形,且,,,的中点,平面.

(Ⅰ)证明:平面平面
(Ⅱ)若,试求异面直线所成角的余弦值;
(Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,底面的中点,已知

求:(Ⅰ)三角形的面积;(II)三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱底面

(1)证明:平面
(2)若是棱的中点,在棱上是否存在一点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为菱形,的中点。

(1)若,求证:平面
(2)点在线段上,,试确定的值,使

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,菱形的边长为4,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.

(1)求证:平面
(2)求证:平面平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知多面体的底面是边长为的正方形,底面,且
(Ⅰ )求多面体的体积;
(Ⅱ )求证:平面EAB⊥平面EBC;
(Ⅲ)记线段CB的中点为K,在平面内过K点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正方形所在的平面与正方形所在的平面相互垂直,分别是的中点.
 
(1)求证:面
(2)求直线与平面所成的角正弦值.

查看答案和解析>>

同步练习册答案