精英家教网 > 高中数学 > 题目详情
精英家教网已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1
(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求CC1到平面A1AB的距离;
(Ⅲ)求二面角A-A1B-C的大小.
分析:(I)欲证AC1⊥平面A1BC,根据直线与平面垂直的判定定理可知只需证AC1与平面A1BC内两相交直线垂直,BC⊥AC1,又BA1⊥AC1,满足定理条件;
(II)取AA1中点F,则AA1⊥平面BCF,从而面A1AB⊥面BCF,过C作CH⊥BF于H,则CH⊥面A1AB,从而CH就是CC1到平面A1AB的距离,在Rt△BCF中,求出CH即可;
(III)过H作HG⊥A1B于G,连CG,根据二面角平面角的定义知∠CGH为二面角A-A1B-C的平面角,在Rt△CGH中求出此角的正弦值即可.
解答:(I)证明:因为A1D⊥平面ABC,所以平面AA1C1C⊥平面ABC,
又BC⊥AC,所以BC⊥平面AA1C1C,
得BC⊥AC1,又BA1⊥AC1
所以AC1⊥平面A1BC;(4分)

精英家教网(II)解:因为AC1⊥A1C,所以四边形AA1C1C为菱形,
故AA1=AC=2,又D为AC中点,知∠A1AC=60°.
取AA1中点F,则AA1⊥平面BCF,从而面A1AB⊥面BCF,
过C作CH⊥BF于H,则CH⊥面A1AB,
在Rt△BCF中,BC=2,CF=
3
,故CH=
2
21
7

即CC1到平面A1AB的距离为CH=
2
21
7
(9分)
(III)解:过H作HG⊥A1B于G,连CG,则CG⊥A1B,
从而∠CGH为二面角A-A1B-C的平面角,
在Rt△A1BC中,A1C=BC=2,所以CG=
2

在Rt△CGH中,sin∠CGH=
CH
CG
=
42
7

故二面角A-A1B-C的大小为arcsin
42
7
.(14分)
点评:本题主要考查了直线与平面垂直的判定,以及二面角及其度量和点、线、面间的距离计算,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1的侧面BB1C1C是边长为2的菱形,∠B1BC=60°,侧面BB1C1C⊥底面ABC,∠ABC=90°,二面角A-B1B-C为30°.
(1)求证:AC⊥平面BB1C1C;
(2)求AB1与平面BB1C1C所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1的侧面BB1C1C与底面ABC垂直,BB1=BC,∠B1BC=60°,AB=AC,M是B1C1的中点.
(Ⅰ)求证:AB1∥平面A1CM;
(Ⅱ)若AB1与平面BB1C1C所成的角为45°,求二面角B-AC-B1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜三棱柱ABC-A1B1C1的底面边长AB=2,BC=3,BC⊥面ABC1,CC1与面ABC所成的角为60°则斜三棱柱ABC-A1B1C1体积的最小值是
9
3
9
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知斜三棱柱ABC-A1B1C1的各棱长均为2,侧棱与底面所成角为
π3
,且侧面ABB1A1垂直于底面.
(1)判断B1C与C1A是否垂直,并证明你的结论;
(2)求四棱锥B-ACC1A1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知斜三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,点D为AC的中点,A1D⊥平面ABC,A1B⊥ACl
(I)求证:AC1⊥AlC; 
(Ⅱ)求二面角A-A1B-C的余弦值.

查看答案和解析>>

同步练习册答案