精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=a,以后各项由递推公式an+1=
2an
1+an
给出,写出这个数列的前4项:______、______、______、______,并由此写出一个通项公式an=______.
∵a1=a,an+1=
2an
1+an
,∴a2=
2a
1+a

a3=
2a2
1+a2
=
4a
1+a
1+
2a
1+a
=
4a
1+3a

a4=
2a3
1+a3
=
8a
1+3a
1+
4a
1+3a
=
8a
1+7a

观察规律:an=
2n-1a
1+(2n-1-1)a

故答案为:a,
2a
1+a
4a
1+3a
8a
1+7a
2n-1a
1+(2n-1-1)a
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案