分析 (Ⅰ)由$\frac{c}{a}=\frac{\sqrt{2}}{2}$,a+c=$\sqrt{2}+1$,可得a、b、c;
(Ⅱ)联立$\left\{\begin{array}{l}y=k(x+1)\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$化简,结合韦达定理求解求得PQ,用距离公式得点F2到直线l的距离d,s△PQF2=$\frac{1}{2}$|PQ|•d=$\frac{\sqrt{10}}{3}$,即可求得k.
解答 解:(Ⅰ)$\frac{c}{a}=\frac{\sqrt{2}}{2}$,a+c=$\sqrt{2}+1$∴$a=\sqrt{2}c,c=1,a=\sqrt{2}$.椭圆C的方程为$\frac{x^2}{2}+{y^2}=1$.
(Ⅱ)F1(-1,0),F2(1,0),直线l:y=k(x+1),
设P(x1,y1),Q(x2,y2)
联立$\left\{\begin{array}{l}y=k(x+1)\\ \frac{x^2}{2}+{y^2}=1\end{array}\right.$得:(1+2k2)x2+4k2x+2k2-2=0
∴${x_1}+{x_2}=-\frac{{4{k^2}}}{{1+2{k^2}}},{x_1}{x_2}=\frac{{2{k^2}-2}}{{1+2{k^2}}}$.
$|{PQ}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{1+{k^2}}\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}$=$\frac{{2\sqrt{2}(1+{k^2})}}{{1+2{k^2}}}$,
点F2到直线l的距离$d=\frac{2|k|}{{\sqrt{1+{k^2}}}}$,
∴s△PQF2=$\frac{1}{2}$|PQ|•d=$\frac{\sqrt{10}}{3}$
化简得:16k4+16k2-5=0,
(4k2+5)(4k2-1)=0,∴k2=$\frac{1}{4}$,k=±$\frac{1}{2}$
∴直线l的方程为x±2y+1=0.
点评 本题考查了直线与椭圆的位置关系,考查了基本运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $(\frac{{\sqrt{5}}}{5},\frac{3}{5})$ | B. | $(\frac{{\sqrt{2}}}{5},\frac{{\sqrt{5}}}{5})$ | C. | $(\frac{{\sqrt{2}}}{5},\frac{3}{5})$ | D. | $(0,\frac{{\sqrt{5}}}{5})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{3}{2}$ | C. | $\sqrt{2}$ | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com