精英家教网 > 高中数学 > 题目详情
如果有穷数列a1,a2,…,an(n∈N*),满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i=1,2,…,n),我们称其为“对称数列”.例如:数列1,2,3,4,3,2,1就是“对称数列”.已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,则数列bn的前2008项和S2008可以是:①22008-1;②2(22008-1);③3•2m-1-22m-2009-1;④2m+1-22m-2008-1.
其中命题正确的个数为(  )
A、1B、2C、3D、4
分析:由题意由于新定义了对称数列,且已知数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,故数列bn的前2008项利用等比数列的前n项和定义直接可求①②的正确与否;对于③④,先从等比数列的求和公式求出任意2m项的和在利用减法的到需要的前2008项的和,即可判断.
解答:解:因为数列bn是项数为不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中前连续的m项,
故数列bn的前2008项可以是:①1,2,22,23…,21003,21003,…,22,1.
所以前2008项和S2008=2×
1×(1-21004)
1-2
=2(21004-1),所以①②错;
对于 ③1,2,22…2m-1,2m-1,2m-2,…,2,1,
1,2,…2m-2,2m-1,2m-1,2m-2,…,2,1…m=2n.m=8,利用等比数列的求和公式可以得:s2008=3•2m-1-22m-2009-1,所以③正确;
对于④1,2,22,…2m-2,2m-1,2m-2,…,2,1,1,2,…2m-2,2m-1,2m-2,…,2,1…m-1=2n+1,利用等比数列的求和公式可得:
S2008=2m+1-22m-2008-1,故④正确.
故选:B
点评:此题考查了学生对于新题意,新定义的理解,还考查了等比数列的求和公式及学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果有穷数列a1,a2,a3,…,am(m为正整数)满足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列“例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.设{bn}是项数为2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,23,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2010项和S2010可以是
(1)22010-1     (2)21006-2       (3)2m+1-22m-2010-1
其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能为:①22009-1  ②2(22009-1)③3•2m-1-22m-2010-1  ④2m+1-22m-2009-1;其中正确的有(  )个.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如果有穷数列a1a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能的取值的序号为(  )
①22009-1   ②2(22009-1)③3•2m-1-22m-2010-1   ④2m+1-22m-2009-1.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省高三第五次月考理科数学 题型:填空题

如果有穷数列a1,a2,…an(a∈N*)满足条件:,我们称

其为“对称数列”,例如:数列1,2,3,3,2,1和数列1,2,3,4,3,2,1都为“对称数列”。已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,……,2m-1依次为该数列中连续的前m项,则数列的前2009项和S2009所有可能的取值的序号为           

①  22009—1    ②2·(22009—1)    ③3×2m-1—22m-2010—1    ④2m+1—22m-2009—1

 

查看答案和解析>>

同步练习册答案