精英家教网 > 高中数学 > 题目详情

已知函数 
(1)求的单调区间和极值;
(2)当m为何值时,不等式 恒成立?
(3)证明:当时,方程内有唯一实根.
(e为自然对数的底;参考公式:.)

(1)内是减函数,在(1-m,+∞)内是增函数,当等于1-m时,函数有极小值1-m.(2)m≤1.(3) 详见解析.

解析试题分析:(1)求导即得.(2)要不等式 恒成立,只需的最小值≥0即可.(3) 要证明方程内有唯一实根,需要证明以下两点:第一、上是单调函数,第二、.
试题解析:(1)
         2分
内是减函数,在(1-m,+∞)内是增函数,当等于1-m时,函数有极小值1-m.                          4分
(2)由(1)知,在定义域内只有一个极值点,所以的最小值就是1-m,从而当1-m≥0时,不等式≥0恒成立                6分
故所求的实数m的取值范围是m≤1.                     8分
(3)∵m>1,.                 9分
               10分


.                           12分
根据第1小问的结论,在(1-m,+∞)内是增函数,因此,方程在区间内有唯一的实根              13分
考点:1、导数的应用;2、函数的零点(方程的根);3不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为元,则销售量(单位:件)与零售价(单位:元)有如下关系:,问该商品零售价定为多少元时毛利润最大,并求出最大毛利润.(毛利润销售收入进货支出)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数的图象在公共点P处有相同的切线,求实数的值及点P的坐标;
(2)若函数的图象有两个不同的交点M、N,求实数的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处的切线与轴平行.
(1)求的值和函数的单调区间;
(2)若函数的图象与抛物线恰有三个不同交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为自然对数的底,
(1)求的最值;
(2)若关于方程有两个不同解,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若在点处的切线斜率为
(Ⅰ)用表示
(Ⅱ)设,若对定义域内的恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若曲线处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数单调递增区间;
(2)若存在,使得是自然对数的底数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像过原点,且在处的切线为直线
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在区间上的最小值和最大值.

查看答案和解析>>

同步练习册答案