精英家教网 > 高中数学 > 题目详情

【题目】某种产品按质量标准分为,,,,五个等级.现从一批该产品随机抽取20个,对其等级进行统计分析,得到频率分布表如下:

等级

频率

1在抽取的20个产品中,等级为5的恰有2个,求,

21的条件下,从等级为35的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.

【答案】(1) ,;(2).

【解析】

试题分析:(1)频率为频数除以样本容量,且一组数据中频率之和为1;(2)先求出等级为3和5的各自数量,然后枚举法求概率.

试题解析:(1)由题意知样本容量为20,因为等级为5的有2个,所以,故 .

(2)等级为3的有0.15×20=3,设为,等级为5的有2个,设为

由枚举得,共有10种取法,抽取的2个产品等级恰好相同的取法有4种,故概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】家政服务公司根据用户满意程度将本公司家政服务员分为两类,其中A类服务员12名,B类服务员x名.

(Ⅰ)若采用分层抽样的方法随机抽取20名家政服务员参加技术培训,抽取到B类服务员的人数是16, 求x的值;

(Ⅱ)某客户来公司聘请2名家政服务员,但是由于公司人员安排已经接近饱和,只有3名A类家政服务员和2名B类家政服务员可供选择,求该客户最终聘请的家政服务员中既有A类又有B类的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD-A1B1C1D1中,点E是A1D1的中点,点F是CE的中点.

(Ⅰ)求证:平面ACE⊥平面BDD1B1

(Ⅱ)求证:AE∥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,DAB=60°.

(1)求证:直线AM∥平面PNC;

(2)求二面角D﹣PC﹣N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.

(1)请根据直方图中的数据填写下面的列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?

(2)在[0,10),[40,50)这两组中采取分层抽样,抽取6人,再从这6名学生中随机抽取2人参加体育知识问卷调查,求这2人中一人来自“课外体育达标”和一人来自“课外体育不达标”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示. 是等腰梯形, 米, 的延长线上, 为锐角). 圆都相切,且其半径长为米. 是垂直于的一个立柱,则当的值设计为多少时,立柱最矮?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某广场中间有一块边长为2百米的菱形状绿化区,其中是半径为1百米的扇形, 管理部门欲在该地从修建小路:在弧上选一点(异于两点),过点修建与平行的小路.问:点选择在何处时,才能使得修建的小路的总长最小?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856323)已知在△ABC中,ABC所对的边分别为abcR为△ABC外接圆的半径,若a=1, sin2Bsin2C-sin2A=sin Asin Bsin C,则R的值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 为常数, 为自然对数的底数).

(1)讨论函数的单调性;

(2)设曲线处的切线为,当时,求直线轴上截距的取值范围.

查看答案和解析>>

同步练习册答案