精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C1的参数方程为 (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.

(1)把C1的参数方程化为极坐标方程;

(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

【答案】(1)曲线C1的极坐标方程为ρ2﹣10ρcosθ﹣8ρsinθ+16=0;(2)(2,0), .

【解析】

试题(1)把C1的参数方程化为普通方程,再化为极坐标方程;(2)曲线C1的极坐标方程ρ2﹣10ρcosθ﹣8ρsinθ+16=0,曲线C2的极坐标方程为ρ=2cosθ,联立,即可求C1C2交点的极坐标.

试题解析:

(Ⅰ)曲线C1的参数方程为 (t为参数), 则曲线C1的普通方程为(x﹣5)2+(y﹣4)2=25,

曲线C1的极坐标方程为ρ2﹣10ρcosθ﹣8ρsinθ+16=0.

(Ⅱ)曲线C1的极坐标方程ρ2﹣10ρcosθ﹣8ρsinθ+16=0,曲线C2的极坐标方程为ρ=2cosθ,联立得 ,又θ[0,2π),则θ=0

θ=0时,ρ=2;当 时, ,所以交点坐标为(2,0),

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线在点处的切线方程;

2)当时,求函数在区间上的最大值和最小值;

3)若对任意的,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A24

1)设圆Nx轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点,且BC=OA,求直线l的方程;

3)设点Tt,o)满足:存在圆M上的两点PQ,使得,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的右焦点为,点分别是椭圆的上、下顶点,点是直线上的一个动点(与轴的交点除外),直线交椭圆于另一个点.

(1)当直线经过椭圆的右焦点时,求的面积;

(2)①记直线的斜率分别为,求证:为定值;

②求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在[﹣1,1]上的奇函数f(x)满足当﹣1≤x<0时,f(x)=.

(1)求f(x)在[﹣1,1]上的解析式;

(2)当x∈(0,1]时,函数g(x)=﹣m有零点,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教育学家分析发现加强语文阅读理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲乙两个同类班级进行试验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面的列联表(单位:人)

优秀人数

非优秀人数

总计

甲班

乙班

总计

(1)能否据此判断有把握认为加强语文阅读训练与提高数学应用题得分率有关?

(2)经过多次测试后,小明正确解答一道数学应用题所用的时间在分钟,小刚正确解答一道数学应用题所用的时间在分钟,现小明、小刚同时独立解答同一道数学应用题,求小刚比小明先正确解答完的概率;

(3)现从乙班成绩优秀的名同学中任意抽取两人,并对他们的答题情况进行全程研究,记两人中被抽到的人数为,求的分布列及数学期望

附表及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切于,且圆心在直线.

1)求圆的方程;

2)已知直线经过原点,并且被圆截得的弦长为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求 的值;

(2)试猜想的表达式(用一个组合数表示),并证明你的猜想.

查看答案和解析>>

同步练习册答案