精英家教网 > 高中数学 > 题目详情

已知数列{an},a1=1,a2=2,当整数n>1,Sn+1+Sn-1=2(Sn+S1)都成立,S5=    .

 

21

【解析】Sn+1+Sn-1=2(Sn+S1),

(Sn+1-Sn)-(Sn-Sn-1)=2S1=2,

an+1-an=2(n2),数列{an}从第二项起构成等差数列,S5=1+2+4+6+8=21.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业三十六第六章第二节练习卷(解析版) 题型:选择题

已知集合A={x|x(x-a)<0},1A,2A,则实数a的取值范围是(  )

(A)1a2 (B)1<a<2

(C)1<a2 (D)1a<2

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业三十二第五章第三节练习卷(解析版) 题型:选择题

在等比数列{an},a6a7的等差中项等于48,a4a5a6a7a8a9a10=1286.如果设数列{an}的前n项和为Sn,那么Sn=(  )

(A)5n-4(B)4n-3

(C)3n-2(D)2n-1

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业三十九第六章第五节练习卷(解析版) 题型:选择题

将石子摆成如图的梯形形状.称数列5,9,14,20,…为“梯形数列”.根据图形的构成,此数列的第2012项与5的差,a2012-5=(  )

(A)1009×2011 (B)1009×2010

(C)1009×2009 (D)1010×2011

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业三十三第五章第四节练习卷(解析版) 题型:解答题

已知数列{an}的首项为a1=1,其前n项和为Sn,且对任意正整数nn,an,Sn成等差数列.

(1)求证:数列{Sn+n+2}成等比数列.

(2)求数列{an}的通项公式.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业三十三第五章第四节练习卷(解析版) 题型:选择题

设等比数列{an}的各项均为正数,公比为q,n项和为Sn.若对?nN*,S2n<3Sn,q的取值范围是(  )

(A)(0,1](B)(0,2)(C)[1,2)(D)(0,)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业三十七第六章第三节练习卷(解析版) 题型:填空题

设函数f(x)=D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,z=x-2yD上的最大值为    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业三十一第五章第二节练习卷(解析版) 题型:解答题

等差数列{an}的首项为a1,公差d=-1,n项和为Sn.

(1)S5=-5,a1的值.

(2)Snan对任意正整数n均成立,a1的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业七十六选修4-2第三节练习卷(解析版) 题型:解答题

对任意实数x,矩阵总存在特征向量,m的取值范围.

 

查看答案和解析>>

同步练习册答案