精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左焦点为,右焦点为,设MN是椭圆C上位于x轴上方的两动点,且直线与直线平行,交于点D

(Ⅰ)求的坐标;

(Ⅱ)求的最小值;

(Ⅲ)求证:是定值.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)见解析.

【解析】

(Ⅰ)由椭圆方程得后可得,即得焦点坐标;

(Ⅱ)设直线与椭圆的另一焦点是,由椭圆的对称性得,设,设直线方程是,与椭圆方程联立消元后应用韦达定理可得,用弦长公式求得,计算并代入得关于的函数,可得最小值.

(Ⅲ)由(Ⅱ)得,再由,由平行线性质求得,相加即证.

(Ⅰ)由题意,所以,焦点为

(Ⅱ)设直线与椭圆的另一焦点是,因为,所以由椭圆的对称性得

,设直线方程是

所以当时,取得最小值为

(Ⅲ)因为,且在椭圆上,

所以

同理

所以

由(Ⅱ)

所以为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的参数方程为为参数).在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴非负半轴为极轴)中,直线的方程为.

1)求圆的普通方程及直线的直角坐标方程;

2)设直线与圆相交于两点,与轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着节能减排意识深入人心以及共享单车在饶城的大范围推广,越来越多的市民在出行时喜欢选择骑行共享单车。为了研究广大市民在共享单车上的使用情况,某公司在我市随机抽取了100名用户进行调查,得到如下数据:

每周使用次数

1次

2次

3次

4次

5次

6次及以上

4

3

3

7

8

30

6

5

4

4

6

20

合计

10

8

7

11

14

50

(1)如果认为每周使用超过3次的用户为“喜欢骑行共享单车”,请完成列表(见答题卡),并判断能否在犯错误概率不超过0.05的前提下,认为是否“喜欢骑行共享单车”与性别有关?

(2)每周骑行共享单车6次及6次以上的用户称为“骑行达人”,视频率为概率,在我市所有“骑行达人”中,随机抽取4名用户.

① 求抽取的4名用户中,既有男生“骑行达人”又有女“骑行达人”的概率;

②为了鼓励女性用户使用共享单车,对抽出的女“骑行达人”每人奖励500元,记奖励总金额为,求的分布列及数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领农村地区人民群众脱贫奔小康,扶贫办计划为某农村地区购买农机机器,假设该种机器使用三年后即被淘汰.农机机器制造商对购买该机器的客户推出了两种销售方案:

方案一:每台机器售价7000元,三年内可免费保养2次,超过2次每次收取保养费200元;

方案二:每台机器售价7050元,三年内可免费保养3次,超过3次每次收取保养费100元.

扶贫办需要决策在购买机器时应该选取那种方案,为此搜集并整理了50台这种机器在三年使用期内保养的次数,得下表:

保养次数

0

1

2

3

4

5

台数

1

10

19

14

4

2

表示1台机器在三年使用期内的保养次数.

(1)用样本估计总体的思想,求“不超过2”的概率;

(2)若表示1台机器的售价和三年使用期内花费的费用总和(单位:元),求选用方案一时关于的函数解析式;

(3)按照两种销售方案,分别计算这50台机器三年使用期内的总费用(总费用=售价+保养费),以每台每年的平均费用作为决策依据,扶贫办选择那种销售方案购买机器更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次数学竞赛,共有6道选择题,规定每道题答对得5分,不答得1分,答错倒扣1分.一个由若干名学生组成的学习小组参加了这次竞赛,这个小组的人数与总得分情况为(  )

A. 当小组的总得分为偶数时,则小组人数一定为奇数

B. 当小组的总得分为奇数时,则小组人数一定为偶数

C. 小组的总得分一定为偶数,与小组人数无关

D. 小组的总得分一定为奇数,与小组人数无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则的取值范围为(  )

A. (﹣1,+∞)B. (﹣1,1]C. (﹣∞,1)D. [﹣1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,E,F分别为线段CD和上的动点,且满足,则四边形所围成的图形(如图所示阴影部分)分别在该正方体有公共顶点的三个面上的正投影的面积之和(  )

A. 有最小值B. 有最大值C. 为定值3D. 为定值2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】l为曲线C在点处的切线.

1)求l的方程;

2)证明:除切点之外,曲线C在直线l的下方;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱柱中,的中点,点在侧棱上,平面

(1) 证明:的中点;

(2) ,四边形为边长为4正方形,四边形为矩形,且异面直线所成的角为,求该三棱柱的体积.

查看答案和解析>>

同步练习册答案