精英家教网 > 高中数学 > 题目详情
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元).确定x=
 
,使修建此矩形场地围墙的总费用最小.
考点:解三角形的实际应用
专题:应用题,函数的性质及应用
分析:设矩形的另一边长为am,则根据围建的矩形场地的面积为360m2,易得a=
360
x
,此时再根据旧墙的维修费用为45元/m,新墙的造价为180元/m,我们即可得到修建围墙的总费用y表示成x的函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x值.
解答: 解:设矩形的另一边长为a,
则y=45x+180(x-2)+180•2a=225x+360a-360.
由已知ax=360,得a=
360
x

所以 y=225x+
3602
x
-360(x>2).
因为x>0,所以225x+
3602
x
≥2
225×3602
=10800
所以y=225x+
3602
x
-360≥10440,当且仅当225x=
3602
x
时,等号成立.
解得当x=24m时,修建围墙的总费用最小,最小总费用是10440元.
故答案为:24.
点评:本题为函数的实际应用题,主要考查与函数有关的应用问题,利用条件建立函数关系是解决本题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将直线y=
1
3
x绕原点顺时针旋转90°,再向左平移1个单位,所得到的直线的方程为(  )
A、y=-3x-3
B、y=-3x+3
C、y=-3x-1
D、y=3x-3

查看答案和解析>>

科目:高中数学 来源: 题型:

在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,求发现大肠杆菌的概率为(  )
A、0.005
B、0.004
C、0.001
D、0.002

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2cos2x+
3
sin2x+a(a∈R)在区间[0,
π
2
]
上有最小值5,
(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的对称轴方程及在[0,π]上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,以F2为圆心,OF2(O为椭圆中心)为半径作圆F2,若它与椭圆的一个交点为M,且MF1恰好为圆F2的一条切线,则椭圆的离心率为(  )
A、
3
-1
B、2-
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

观察给出的下列各式:
(1)tan10°•tan20°+tan20°•tan60°+tan60°•tan10°=1;
(2)tan5°•tan15°+tan15°•tan70°+tan70°•tan5°=1.
由以上两式成立,你能得到一个什么样的推广?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义在R上的奇函数,当x>0时,f(x)=|x-a2|+|x-3a2|-4a2.若对任意x∈R,f(x)≤f(x+2),则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:
月平均气温x(℃)171382
月销售量y(件)24334055
由表中数据算出线性回归方程
?
y
=bx+a
中的b≈-2.气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量约为
 
件.
(参考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,它在[0,+∞)上为增函数,且f(
1
3
)=0,则不等式f(log8x)>0的解集为
 

查看答案和解析>>

同步练习册答案