【题目】对于函数,若,则称为的“不动点”,若,则称为的“稳定点”,函数的“不动点”和“稳定点”的集合分别记为和,即,,那么,
(1)求函数的“稳定点”;
(2)求证:;
(3)若,且,求实数的取值范围.
【答案】(1)“稳定点”为;(2)见解析;(3)
【解析】
本题拿出一个概念来作为新型定义题,只需要去对定义的理解就好,要求函数的“稳定点”只需求方程中的值,即为“稳定点”
若,有这是不动点的定义,此时得出,,如果,则直接满足.
先求出即存在“不动点”的条件,同理取得到存在“稳定点”的条件,而两集合相等,即条件所求出的结果一直,对结果进行分类讨论.
(1)由有,得:,所以函数的“稳定点”为;
(2)证明:若,则,显然成立;
若,设,有,则有,
所以,故
(3)因为,所以方程有实根,即有实根,
所以或,解得又由得:即由(1)知,故方程左边含有因式
所以,又,
所以方程要么无实根,要么根是方程的解,
当方程无实根时,或,即,
当方程有实根时,则方程的根是方程的解,
则有,代入方程得,故,
将代入方程,得,所以.
综上:的取值范围是.
科目:高中数学 来源: 题型:
【题目】某二手交易市场对某型号的二手汽车的使用年数()与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
销售价格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)试求关于的回归直线方程.
(参考公式:,)
(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
API | [0,100] | (100,200] | (200,300] | >300 |
空气质量 | 优良 | 轻污染 | 中度污染 | 重度污染 |
天数 | 17 | 45 | 18 | 20 |
记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为.当时,企业没有造成经济损失;当对企业造成经济损失成直线模型(当时造成的经济损失为,当时,造成的经济损失);当时造成的经济损失为2000元;
(1)试写出的表达式;
(2)若本次抽取的样本数据有30天是在供暖季,其中有12天为重度污染,完成下面2×2列联表,并判断能否有99%的把握认为该市本年空气重度污染与供暖有关?
非重度污染 | 重度污染 | 合计 | |
供暖季 | |||
非供暖季 | |||
合计 | 100 |
P(k2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱柱ABCD﹣A1B1C1D1(底面是正方形,侧棱垂直于底面)的8个顶点都在球O的表面上,AB=1,AA1′=2,则球O的半径R=;若E,F是棱AA1和DD1的中点,则直线EF被球O截得的线段长为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板长为,跳水板距水面的高为.为安全和空中姿态优美,训练时跳水曲线应在离起跳点处水平距时达到距水面最大高度,规定:以为横轴,为纵轴建立直角坐标系.
(1)当时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域内入水时才能达到比较好的训练效果,求此时的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,E,F分别是棱A1B1 , B1C1的中点,O是AC与BD的交点,面OEF与面BCC1B1相交于m,面OD1E与面BCC1B1相交于n,则直线m,n的夹角为( )
A.0
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com