ijͬѧ»Ø´ð¡°ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¼n+1(n¡ÊN)¡±µÄ¹ý³ÌÈçÏÂ:

Ö¤Ã÷£º(1)µ±n=1ʱ,ÏÔÈ»ÃüÌâÊÇÕýÈ·µÄ;(2)¼ÙÉèn=kʱÓУ¼k+1,ÄÇôµ±n=k+1ʱ,=(k+1)+1,ËùÒÔµ±n=k+1ʱÃüÌâÊÇÕýÈ·µÄ,ÓÉ(1)(2)¿ÉÖª¶ÔÓÚn¡ÊN,ÃüÌⶼÊÇÕýÈ·µÄ.ÒÔÉÏÖ¤·¨ÊÇ´íÎóµÄ,´íÎóÔÚÓÚ(    )

A.µ±n=1ʱ,ÑéÖ¤¹ý³Ì²»¾ßÌå

B.¹éÄɼÙÉèµÄд·¨²»ÕýÈ·

C.´Ókµ½k+1µÄÍÆÀí²»ÑÏÃÜ

D.´Ókµ½k+1µÄÍÆÀí¹ý³ÌûÓÐʹÓùéÄɼÙÉè

½âÎö£ºµ±n=k+1ʱ,

=(k+1)+1,¹ÊD´íÎó.

´ð°¸£ºD

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ²»µÈʽ
n2+n
£¼n+1£¨n¡ÊN*£©£¬Ä³Í¬Ñ§ÓÃÊýѧ¹éÄÉ·¨µÄÖ¤Ã÷¹ý³ÌÈçÏ£º
£¨1£©µ±n=1ʱ£¬
12+1
£¼1+1£¬²»µÈʽ³ÉÁ¢£®
£¨2£©¼ÙÉèµ±n=k£¨k¡ÊN*£©Ê±£¬²»µÈʽ³ÉÁ¢£¬¼´
k2+k
£¼k+1£¬Ôòµ±n=k+1ʱ£¬
(k+1)2+(k+1)
=
k2+3k+2
£¼
(k2+3k+2)+(k+2)
=
(k+2)2
=£¨k+1£©+1£¬¡àµ±n=k+1ʱ£¬²»µÈʽ³ÉÁ¢£®
ÔòÉÏÊöÖ¤·¨£¨¡¡¡¡£©
A¡¢¹ý³ÌÈ«²¿ÕýÈ·
B¡¢n=1ÑéµÃ²»ÕýÈ·
C¡¢¹éÄɼÙÉè²»ÕýÈ·
D¡¢´Ón=kµ½n=k+1µÄÍÆÀí²»ÕýÈ·

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijѧÉúÔÚ¹Û²ìÕýÕûÊýµÄÇ°nÏîƽ·½ºÍ¹«Ê½¼´12+22+32+¡­+n2=
n(n+1)(2n+1)
6
£¬n¡ÊN*ʱ·¢ÏÖËüµÄºÍΪ¹ØÓÚnµÄÈý´Îº¯Êý£¬ÓÚÊÇËû²ÂÏ룺ÊÇ·ñ´æÔÚ³£Êýa£¬b£¬1•22+2•32+¡­+n£¨n+1£©2=
n(n+1)(n+2)(an+b)
12
£®¶ÔÓÚÒ»ÇÐn¡ÊN*¶¼Á¢£¿
£¨1£©Èôn=1£¬2 Ê±²ÂÏë³ÉÁ¢£¬ÇóʵÊýa£¬bµÄÖµ£®
£¨2£©Èô¸ÃͬѧµÄ²ÂÏë³ÉÁ¢£¬ÇëÄãÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®Èô²»³ÉÁ¢£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ²»µÈʽ<n£«1(n¡ÊN*)£¬Ä³Í¬Ñ§ÓÃÊýѧ¹éÄÉ·¨µÄÖ¤Ã÷¹ý³ÌÈçÏ£º

(1)µ±n£½1ʱ£¬<1£«1£¬²»µÈʽ³ÉÁ¢£®

(2)¼ÙÉèµ±n£½k(k¡ÊN*ÇÒk¡Ý1)ʱ£¬²»µÈʽ³ÉÁ¢£¬¼´<k£«1£¬Ôòµ±n£½k£«1ʱ£¬£½<£½£½(k£«1)£«1£¬

ËùÒÔµ±n£½k£«1ʱ£¬²»µÈʽ³ÉÁ¢£¬ÔòÉÏÊöÖ¤·¨                    (¡¡¡¡)£®

A£®¹ý³ÌÈ«²¿ÕýÈ·

B£®n£½1ÑéµÃ²»ÕýÈ·

C£®¹éÄɼÙÉè²»ÕýÈ·

D£®´Ón£½kµ½n£½k£«1µÄÍÆÀí²»ÕýÈ·

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijͬѧ»Ø´ð¡°ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£¼n+1(n¡ÊN)¡±µÄ¹ý³ÌÈçÏ£º

Ö¤Ã÷£º£¨1£©µ±n=1ʱ£¬ÏÔÈ»ÃüÌâÊÇÕýÈ·µÄ£»£¨2£©¼ÙÉèn=kʱÓУ¼k+1£¬ÄÇôµ±n=k+1ʱ£¬(k+1)+1£¬ËùÒÔµ±n=k+1ʱÃüÌâÊÇÕýÈ·µÄ£¬ÓÉ£¨1£©¡¢£¨2£©¿ÉÖª¶ÔÓÚ£¨n¡ÊN£©,ÃüÌⶼÊÇÕýÈ·µÄ.ÒÔÉÏÖ¤·¨ÊÇ´íÎóµÄ£¬´íÎóÔÚÓÚ£¨    £©

A.µ±n=1ʱ£¬ÑéÖ¤¹ý³Ì²»¾ßÌå

B.¹éÄɼÙÉèµÄд·¨²»ÕýÈ·

C.´Ókµ½k+1µÄÍÆÀí²»ÑÏÃÜ

D.´Ókµ½k+1µÄÍÆÀí¹ý³ÌûÓÐʹÓùéÄɼÙÉè

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸