精英家教网 > 高中数学 > 题目详情
已知复数Z=2m-1+(m+1)i
(1)若复数Z所对应的点在第一象限,求实数m的取值范围;
(2)若复数|Z|≤
3
,求实数m的取值范围.
分析:(1)写出复数z的共轭复数,对应的点在第一象限,说明其实部大于0,虚部大于0,列不等式求解a的取值范围.
(2)利用复数的模的关系式,直接列出不等式求解即可.
解答:解:(1)复数Z=2m-1+(m+1)i
若复数Z所对应的点在第一象限,
2m-1>0
m+1>0
,解得:m>
1
2

所以数对应的点在第一象限的实数m的取值范围是{m|m>
1
2
}.
(2)因为|Z|≤
3
,所以
(2m-1)2+(m+1)2
3
,解得
1-
6
5
≤m≤
1+
6
5
点评:本题考查了复数的基本概念,关键是读懂题意,把问题转化为方程或不等式组求解,此题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=(1+2m)+(3+m)i,(m∈R).
(1)若复数z在复平面上所对应的点在第二象限,求m的取值范围;
(2)求当m为何值时,|z|最小,并求|z|的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知复数z=(1+2m)+(3+m)i,(m∈R).
(1)若复数z在复平面上所对应的点在第二象限,求m的取值范围;
(2)求当m为何值时,|z|最小,并求|z|的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省舟山市嵊泗中学高二(下)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知复数Z=2m-1+(m+1)i
(1)若复数Z所对应的点在第一象限,求实数m的取值范围;
(2)若复数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省三明一中高二(下)第一次月考数学试卷(文科)(解析版) 题型:解答题

已知复数z=(1+2m)+(3+m)i,(m∈R).
(1)若复数z在复平面上所对应的点在第二象限,求m的取值范围;
(2)求当m为何值时,|z|最小,并求|z|的最小值.

查看答案和解析>>

同步练习册答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�