精英家教网 > 高中数学 > 题目详情

【题目】数列的各项均为整数,满足:,且,其中

1)若,写出所有满足条件的数列

2)求的值;

3)证明:

【答案】(1);(2;3)证明见解析.

【解析】

(1)根据并结合已知条件即可写出满足条件的数列

(2) ,利用反证法即可证出;

(3)先利用反证法证明,必有,然后对此不等式中,可得个不等式并将其累加,再利用等比数列求和公式化简后,再结合已知即可证得结果.

(1)当时,,又

故满足条件的数列为:

(2)

否则,假设,因为,所以.又,因此有

这与矛盾,

所以

(3)先证明如下结论:,必有

否则,假设

注意左式是的的整数倍,因此

所以有

这与矛盾.

所以

因此有

……

……

将上述个不等式相加得

-①得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为,左右两顶点,点为椭圆上任意一点,满足直线的斜率之积为,且的最大值为4.

1)求椭圆的标准方程;

2)若直线与过点且与轴垂直的直线交于点,过点,垂足分别为两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥是等边三角形,的中点.

1)求证:直线平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)令,讨论的单调性;

2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.两点(轴上方),交极轴于点(异于极点.

1)求的直角坐标方程和的直角坐标;

2)若的中点,上的点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的极大值点;

2)若函数,判断的单调性;

3)若函数有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的单调区间和极值;

2)若对于任意的,总存在,使得成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为4的正方形,为正方形内一点,它到边的距离分别是12平面是棱上一点,且

1)求直线所成角的余弦值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数.

1)求函数的单调区间;

2)设函数,若有两个相异极值点,且,求证:.

查看答案和解析>>

同步练习册答案