精英家教网 > 高中数学 > 题目详情
1.设有一正态总体,它的正态曲线是函数f(x)的图象,且f(x)=$\frac{1}{\sqrt{8π}}$e-$\frac{(x-10)^{2}}{8}$,则这个正态总体的平均数与方差分别是(  )
A.10与8B.10与4C.8与10D.4与10

分析 根据正态分布函数的式子得出:μ,σ2,即可选择答案.

解答 解:∵f(x)=$\frac{1}{\sqrt{8π}}$e-$\frac{(x-10)^{2}}{8}$,正态曲线是函数f(x)的图象
∴根据正态分布函数的式子得出:μ=10,σ2=4,
故选:B

点评 本题考察了正态分布曲线的函数解析式,运用公式求解即可,但是不容易记住,特别忽略方差,与标准方差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求异面直线A1B和AC所成角的余弦值;
(2)求异面直线PC和A1C1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.比较1.5-0.2,1.30.7,($\frac{2}{3}$)${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.从2003名同学中抽取50名同学组成参观团,采用如下方法抽取,先用简单随机抽样方法剔除3人,再用系统抽样方法抽出参团的50人.那么每位同学入选的概率为$\frac{50}{2003}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解不等式:x2-2(a+1)x+1≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=logax(a>0,且a≠1),若数列:2,f(a1),f(a2)…f(an),2n+4(n∈N+)成等差数列
(1)求数列{an}的通项an
(2)若0<a<1,数列{an}的前n项和为Sn,求Sn的表达式
(3)若a=2,令bn=an•f(an),对任意n∈N*,都有bn>f-1(t),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2ax2+4x-3-a,a∈R.
(1)当a=1时,求函数f(x)在[-1,1]上的最大值;
(2)如果函数f(x)在区间[-1,1]上存在两个不同的零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=2-|x+1|的单调递增区间为(  )
A.(-∞,-1)B.(-∞,0)C.(0,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.上饶某中学研究性学习小组为调查市民喜欢观看体育节目是否与性别有关,随机抽取了55名市民,得到数据如下表:
 喜欢不喜欢合计
20525
102030
合计302555
(1)判断是否有99.5%的把握认为喜欢观看体育节目与性别有关?
(2)用分层抽样的方法从喜欢观看体育节目的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求男市民人数ξ的分布列和期望.
下面的临界值表参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案