精英家教网 > 高中数学 > 题目详情
7.已知在数列{an}中,a1=1,a2=2,an+2=an+2n,则an=$\left\{\begin{array}{l}{\frac{1}{2}(n-1)^{2}+1,}&{n为奇数}\\{\frac{1}{2}{(n-1)}^{2}+\frac{3}{2},}&{n为偶数}\end{array}\right.$.

分析 通过an+2=an+2n可知an=an-2+2(n-2)、an-2=an-4+2(n-4)、…、a4=a2+2•2、a3=a1+2•1,分n为奇偶数两种情况讨论即可.

解答 解:∵an+2=an+2n,
∴an=an-2+2(n-2),
an-2=an-4+2(n-4),

a4=a2+2•2,
a3=a1+2•1,
∴当n为偶数时,an=a2+2[2+4+…+(n-2)]
=2+2[0+2+4+…+(n-2)]
=2+2•$\frac{n(0+n-2)}{4}$
=$\frac{1}{2}$n2-n+2
=$\frac{1}{2}$(n-1)2+$\frac{3}{2}$,
且当n=2时满足上式;
当n为奇数时,an=a1+2[1+3+…+(n-2)]
=1+2•$\frac{(n-1)(1+n-2)}{4}$
=$\frac{1}{2}$(n-1)2+1
且当n=1时满足上式;
综上所述,an=$\left\{\begin{array}{l}{\frac{1}{2}(n-1)^{2}+1,}&{n为奇数}\\{\frac{1}{2}{(n-1)}^{2}+\frac{3}{2},}&{n为偶数}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{\frac{1}{2}(n-1)^{2}+1,}&{n为奇数}\\{\frac{1}{2}{(n-1)}^{2}+\frac{3}{2},}&{n为偶数}\end{array}\right.$.

点评 本题考查数列的通项,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an},a7+a4=2,a5a6=-8,求a1+a10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)满足f(-x)=-f(x),f(x-2)=f(x+2),且x∈(-2,0),f(x)=2x+$\frac{1}{2}$,则f(2013)=(  )
A.-1B.0C.1D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,a1=2,且对任意的自然数n∈N*,都有a1+a2+a3+…+an=nan+n(n-1)成立,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求满足[$\sqrt{n+\sqrt{n+\sqrt{n}}}$]=2的正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)为偶函数,g(x)为奇函数,求满足下列条件的f(x)、g(x)的解析式:
(1)f(x)+g(x)=x2+x-2;
(2)f(x)+g(x)=$\frac{1}{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设命题p:点(2x+3-x2,x-2)在第四象限,命题q:x2-(3a+6)x+2a2+6a<0,其中a>-6,若¬p是¬q的充分不必要条件,则实数a的取值范围是∅.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.证明:$\begin{array}{l}\frac{(n+1)!}{k!(n+1-k)!}$=$\frac{n!}{k!(n-k)!}$+$\frac{n!}{(k-1)!(n-k+1)!}\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设圆(x+3)2+(y+5)2=r2上有且仅有两个点到直线4x-3y+2=0的距离等于1,则圆的半径r的取值范围是0<r<2.

查看答案和解析>>

同步练习册答案