【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积.弧田,由圆弧和其所对的弦所围成.公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与实际面积之间存在误差.现有圆心角为,弦长等于米的弧田. 按照上述经验公式计算所得弧田面积与实际面积的误差为_______平方米.(用“实际面积减去弧田面积”计算)
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 的左焦点为,且过点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线与椭圆E交于两点,与的交点为,且满足.
①若,求: 的值;
②设点是椭圆E的左顶点,点关于轴的对称点为点,试探究:在线段上是否存在一个定点,使得直线过定点,如果存在,求出点的坐标;如果不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有大小形状完全相同的5个小球,其中3个白球的标号分别为1、 2 、3, 2 个黑球的标号分别为1、3.
(Ⅰ)从袋中随机摸出两个球,求摸到的两球颜色与标号都不相同的概率;
(Ⅱ)从袋中有放回地摸球,摸两次,每次摸出一个球,求摸出的两球的标号之和小于4 的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为 (单位:元).
(1)写出楼房每平方米的平均综合费用关于建造层数的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆的圆心在轴上,且过点,.
(1)求圆的方程;
(2)直线:与轴交于点,点为直线上位于第一象限内的一点,以为直径的圆与圆相交于点,.若直线的斜率为-2,求点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,的首项,且满足,,其中,设数列,的前项和分别为,.
(Ⅰ)若不等式对一切恒成立,求.
(Ⅱ)若常数且对任意的,恒有,求的值.
(Ⅲ)在(Ⅱ)的条件下且同时满足以下两个条件:
(ⅰ)若存在唯一正整数的值满足;
(ⅱ)恒成立.试问:是否存在正整数,使得,若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题13分)已知函数f(x)=- (a>0,x>0).
(1)求证:f(x)在(0,+∞)上是单调递增函数;
(2)若f(x)在[,2]上的值域是[,2],求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点。那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线相交于不同的两点、,且中点横坐标为2,求的值.
【答案】(1);(2)2.
【解析】试题分析:
(1)由题意设抛物线方程为,则准线方程为,解得,即可求解抛物线的方程;
(2)由消去得,根据,解得且,得到,即可求解的值.
试题解析:
(1)由题意设抛物线方程为(),其准线方程为,
∵到焦点的距离等于到其准线的距离,∴,∴,
∴此抛物线的方程为.
(2)由消去得,
∵直线与抛物线相交于不同两点、,则有
解得且,
由,解得或(舍去).
∴所求的值为2.
【题型】解答题
【结束】
20
【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面, , , , 分别为, 的中点,点在线段上.
(1)求证: 平面;
(2)如果三棱锥的体积为,求点到面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com