精英家教网 > 高中数学 > 题目详情

【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积.弧田,由圆弧和其所对的弦所围成.公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与实际面积之间存在误差.现有圆心角为,弦长等于米的弧田. 按照上述经验公式计算所得弧田面积与实际面积的误差为_______平方米.(用“实际面积减去弧田面积”计算)

【答案】

【解析】分析:利用扇形的面积公式,计算扇形的面积,从而可得弧田的实际面积,按照上述弧田面积经验公式计算得从而可求误差.

详解扇形半径

扇形面积等于

弧田面积

圆心到弦的距离等于所以矢长为

按照上述弧田面积经验公式计算得.

.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的左焦点为,且过点.

(Ⅰ)求椭圆E的方程

(Ⅱ)设直线与椭圆E交于两点,与的交点为,且满足.

,求 的值

设点是椭圆E的左顶点,点关于轴的对称点为点,试探究:在线段上是否存在一个定点,使得直线过定点,如果存在,求出点的坐标;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有大小形状完全相同的5个小球,其中3个白球的标号分别为1、 2 、3, 2 个黑球的标号分别为1、3.

(Ⅰ)从袋中随机摸出两个球,求摸到的两球颜色与标号都不相同的概率;

(Ⅱ)从袋中有放回地摸球,摸两次,每次摸出一个球,求摸出的两球的标号之和小于4 的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为 (单位:元).

(1)写出楼房每平方米的平均综合费用关于建造层数的函数关系式;

(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?

(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆的圆心在轴上,且过点.

(1)求圆的方程;

(2)直线轴交于点,点为直线上位于第一象限内的一点,以为直径的圆与圆相交于点.若直线的斜率为-2,求点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项,且满足,其中,设数列的前项和分别为

Ⅰ)若不等式对一切恒成立,求

Ⅱ)若常数且对任意的,恒有,求的值.

Ⅲ)在(Ⅱ)的条件下且同时满足以下两个条件:

ⅰ)若存在唯一正整数的值满足

恒成立.试问:是否存在正整数,使得,若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题13)已知函数f(x) (a>0x>0)

(1)求证:f(x)(0,+∞)上是单调递增函数;

(2)f(x)[2]上的值域是[2],求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,MN是小圆的一条固定直径的两个端点。那么,当小圆这样滚过大圆内壁的一周,点MN在大圆内所绘出的图形大致是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线顶点在原点,焦点在轴上,又知此抛物线上一点到焦点的距离为6.

(1)求此抛物线的方程;

(2)若此抛物线方程与直线相交于不同的两点,且中点横坐标为2,求的值.

【答案】(1);(2)2.

【解析】试题分析:

(1)由题意设抛物线方程为,则准线方程为,解得,即可求解抛物线的方程;

(2)由消去,根据,解得,得到,即可求解的值.

试题解析:

(1)由题意设抛物线方程为),其准线方程为

到焦点的距离等于到其准线的距离,∴,∴

∴此抛物线的方程为

(2)由消去

∵直线与抛物线相交于不同两点,则有

解得

,解得(舍去).

∴所求的值为2.

型】解答
束】
20

【题目】如图,在四棱锥中,底面是平行四边形, ,侧面底面 分别为 的中点,点在线段上.

(1)求证: 平面

(2)如果三棱锥的体积为,求点到面的距离.

查看答案和解析>>

同步练习册答案