精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2+2x-4y+3=0.
(1)若不经过坐标原点的直线l与圆C相切,且直线l在两坐标轴上的截距相等,求直线l的方程;
(2)设点P在圆C上,求点P到直线x-y-5=0距离的最大值与最小值.
【答案】分析:(1)把圆的方程化为标准,找出圆心坐标和半径,根据直线l在两坐标轴上的截距相等且不经过坐标原点设出直线l的方程为x+y+m=0,利用点到直线的距离公式求出圆心到直线的距离,让距离等于半径列出关于m的方程,求出方程的解即可得到m的值,进而确定出直线l的方程;
(2)利用点到直线的距离公式求出圆心到直线x-y-5=0的距离d,所以点P到直线x-y-5=0距离的最大值为d+r,最小值为d-r,利用d与r的值代入即可求出值.
解答:解:(1)圆C的方程可化为(x+1)2+(y-2)2=2,
即圆心的坐标为(-1,2),半径为
因为直线l在两坐标轴上的截距相等且不经过坐标原点,
所以可设直线l的方程为 x+y+m=0,
于是有,得m=1或m=-3,
因此直线l的方程为x+y+1=0或x+y-3=0;
(2)因为圆心(-1,2)到直线x-y-5=0的距离为
所以点P到直线x-y-5=0距离的最大值与最小值依次分别为
点评:此题考查学生掌握直线与圆位置关系的判别方法,灵活运用点到直线的距离公式化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案