【题目】在直角坐标系中,过点的直线与抛物线相交于,两点,弦的中点的轨迹记为.
(1)求的方程;
(2)已知直线与相交于,两点.
(i)求的取值范围;
(ii)轴上是否存在点,使得当变动时,总有?说明理由.
【答案】(1) ; (2) (i)或.(ii)见解析.
【解析】
(1)先设,,,根据,以及题意,得到,再由,两式联立,即可得出结果;
(2)(i)先由题意得到方程组有两不同实数解,消去,根据判别式,以及题中条件,列出不等式求解,即可得出结果;
(ii)假设存在是符合题意的点;设,,联立直线与曲线方程,根据韦达定理,得到,,计算,只需,即可得.
(1)设,,,由题意可得:,
则,从而,
因为点为弦的中点,所以,即,
又直线过点,所以,
则,即,
而必在抛物线的内部,从而,即.
故的方程为.
(2)(i)因为直线与相交于,两点,
所以方程组有两不同实数解,
由消去,得,
即在上有两个不相等的实数根,
所以,只需且,
即且,解得:或.
所以的取值范围是或;
(ii)假设存在是符合题意的点;设,.
将消去,得,故,,
由(i)知:或;
从而
,
因此,当,即时,,
又为坐标原点,所以,
即存在点符合题意.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:平面PAB⊥平面PAD;
(2)求二面角P﹣AB﹣D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】男运动员名,女运动员名,其中男女队长各人,选派人外出比赛,在下列情形中各有多少种选派方法.
(1)任选人
(2)男运动员名,女运动员名
(3)至少有名女运动员
(4)队长至少有一人参加
(5)既要有队长,又要有女运动员
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,抛物线与轴所围成的区域是一块等待开垦的土地,现计划在该区域内围出一块矩形地块ABCD作为工业用地,其中A、B在抛物线上,C、D在轴上.已知工业用地每单位面积价值为元,其它的三个边角地块每单位面积价值元.
(1)求等待开垦土地的面积;
(2)如何确定点C的位置,才能使得整块土地总价值最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,一艺术拱门由两部分组成,下部为矩形,的长分别为和,上部是圆心为的劣弧,.
(1)求图1中拱门最高点到地面的距离;
(2)现欲以B点为支点将拱门放倒,放倒过程中矩形所在的平面始终与地面垂直,如图2、图3、图4所示.设与地面水平线所成的角为.记拱门上的点到地面的最大距离为,试用的函数表示,并求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,已知椭圆,抛物线的焦点是的一个顶点,设是上的动点,且位于第一象限,记在点处的切线为.
(1)求的值和切线的方程(用表示)
(2)设与交于不同的两点,线段的中点为,直线与过且垂直于轴的直线交于点.
(i)求证:点在定直线上;
(ii)设与轴交于点,记的面积为,的面积为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,,,,E为AB的中点将沿CE折起,使点B到达点F的位置,且平面CEF与平面ADCE所成的二面角为.
求证:平面平面AEF;
求直线DF与平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分。每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品。
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com