精英家教网 > 高中数学 > 题目详情

【题目】为了了解高三学生的心理健康状况,某校心理健康咨询中心对该校高三学生的睡眠状况进行抽样调查,随机抽取了50名男生和50名女生,统计了他们进入高三后的第一个月平均每天睡眠时间,得到如下频数分布表.规定:“平均每天睡眠时间大于等于8小时”为“睡眠充足”,“平均每天睡眠时间小于8小时”为“睡眠不足”.

高三学生平均每天睡眠时间频数分布表

睡眠时间(小时)

[5,6)

[6,7)

[7,8)

[8,9)

[9,10)

男生(人)

4

18

10

12

6

女生(人)

2

20

16

8

4

(Ⅰ)请将下面的列联表补充完整:

睡眠充足

睡眠不足

合计

男生(人)

32

女生(人)

12

总计

100

(Ⅱ)根据已完成的2×2列联表,判断是否有90%的把握认为“睡是否充足与性别有关”?

附:参考公式

P(K2≥k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.636

10.828

【答案】(I)见解析;(II)没有的把握认为“睡眠是否充足与性别有关”

【解析】

(Ⅰ)根据题意填写列联表;

(Ⅱ)由表中数据计算K2,对照临界值得出结论.

(Ⅰ)根据题意知,男生平均每天睡足8个小时的有18人,

女生平均每天不足8个小时的有38人,由此列联表如下;

睡眠充足

睡眠不足

合计

男生(人)

18

32

50

女生(人)

12

38

50

总计

30

70

100

(Ⅱ)根据列联表中数据,计算K21.7142.706

所以没有90%的把握认为“睡眠是否充足与性别有关”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数

(1)求实数的值;

(2)判断的单调性,并证明.

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某数学兴趣小组有男女生各5名.以下茎叶图记录了该小组同学在一次数学测试中的成绩(单位:分).已知男生数据的中位数为125,女生数据的平均数为126.8.

1)求的值;

2)现从成绩高于125分的同学中随机抽取两名同学,求抽取的两名同学恰好为一男一女的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数满足:对于任意的,当时,都有.

(1)若,求的取值范围;

(2)若为周期函数,证明:是常值函数;

(3)设恒大于零,是定义在上、恒大于零的周期函数,的最大值.

函数. 证明:“是周期函数”的充要条件是“是常值函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆上的一点,为椭圆的两焦点,若,试求:

1)椭圆的方程;

2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为3的正方形所在的平面与等腰直角三角形所在的平面互相垂直,,设.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的极小值;

(Ⅱ)当时,讨论的单调性;

(Ⅲ)若函数在区间上有且只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)-f(x2),且当x>1时,f(x)<0.

(1)求f(1)的值;

(2)判断f(x)的单调性;

(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若关于的方程恰好有个不相等的实数解,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案