精英家教网 > 高中数学 > 题目详情
13.已知sinα=$\frac{1}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),求sin(α+β)和cos(α-β)的值.

分析 由题意和同角三角函数基本关系可得cosα和sinβ,代入两角和与差的三角函数公式可得.

解答 解:∵sinα=$\frac{1}{3}$,α∈($\frac{π}{2}$,π),∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∵cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),∴sinβ=-$\sqrt{1-co{s}^{2}β}$=-$\frac{4}{5}$,
∴sin(α+β)=sinαcosβ+cosαsinβ=$\frac{1}{3}×(-\frac{3}{5})$+$(-\frac{2\sqrt{2}}{3})×(-\frac{4}{5})$=$\frac{-3+8\sqrt{2}}{15}$,
cos(α-β)=cosαcosβ+sinαsinβ=$(-\frac{2\sqrt{2}}{3})×(-\frac{3}{5})$+$\frac{1}{3}×$(-$\frac{4}{5}$)=$\frac{-4+6\sqrt{2}}{15}$

点评 本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.三角形的面积为S平方分米,底边长为1.8分米,底边上的高为H分米,则H和S的函数关系式是(  )
A.S=0.9H(H≥0)B.S=0.9H(H>0)C.H=$\frac{S}{0.9}$(S≥0)D.H=$\frac{S}{0.9}$(S>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知α是第二象限角,且7α与2α的终边相同,则α=144°+k•360°,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\frac{1}{\sqrt{lo{g}_{2}(2x+1)-3}}$的定义域为($\frac{7}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(${x}^{\frac{1}{2}}$一2${y}^{\frac{1}{2}}$)(${x}^{\frac{1}{2}}$+2${y}^{\frac{1}{2}}$)(x+4y)等于x2-16y2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知一曲线上任一点处的切线斜率为$\sqrt{x}$+$\root{3}{x}$,且曲线经过点(1,2),求该曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,短轴的一个端点到右焦点的距离为$\sqrt{3}$,过点(-1,0)且斜率为1的直线l与椭圆交于不同的两点A,B.
(1)求椭圆的标准方程;
(2)求弦|AB|的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log2($\frac{x+b}{x-b}$),(b≠0).
(1)求f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)解关于x的不等式f(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},则A∪B=(  )
A.{-4,-3,0,2,3}B.{-3,-2,0,1,3}C.{-3,-1,0,1,2}D.{-4,-3,0,1,2}

查看答案和解析>>

同步练习册答案